453 research outputs found
New bioassays reveal susceptibility of stone-fruit rootstocks to capnodis tenebrionis larvae
Larvae of Capnodis tenebrionis (L.) (Coleoptera Buprestidae) feed and develop in roots of stone-fruit trees, thereby decreasing their efficiency, which can lead to plant death. The control of these larvae is critical, due to their localization in the root, and the management of this pest is focused on adults, mainly by using non-specific synthetic insecticides. Less susceptible Prunus rootstocks might be applied as a preventative management of larval infestation by this pest. The current research investigated the susceptibility to C. tenebrionis larvae of the most commonly used rootstocks by combining two bio-assays during two-year trials: development of larvae assayed on semi-artificial substrates containing rootstock bark flour; infestation by neonate larvae on rootstock twigs. The rearing assay on semi-artificial substrates made it possible to distinguish (1) a rootstock cluster (Montclar and GF677) in which larvae developed faster and heavier and produced larger adults, (2) a cluster (Adesoto, CAB6P, Colt and MaxMa60) in which larval growth was less efficient as well as adult size, and (3) a cluster (Garnem and Myrabolan 29C) with intermediate responses in larval development and adult size. The twig infestation assay by neonates showed the most infested (Colt) and least infested (Barrier, MaxMa60 and Marianna 26) rootstocks. When the results of both assays are combined, GF677 and Myrabolan 29C appear more susceptible, while Adesoto and MaxMa60 less susceptible to C. tenebrionis larvae, although Barrier and Marianna 26 require further investigation. The experimental model applied in the current trials can enable processing of a large number of tests on different rootstocks, thereby allowing the accumulation of a large quantity of data on the potential susceptibility of rootstocks. The possibility of rearing larvae on a substrate can allow comparison of additional compounds that could interact with larval growth
NGN2 mmRNA-Based Transcriptional Programming in Microfluidic Guides hiPSCs Toward Neural Fate With Multiple Identities
Recent advancements in cell engineering have succeeded in manipulating cell identity with the targeted overexpression of specific cell fate determining transcription factors in a process named transcriptional programming. Neurogenin2 (NGN2) is sufficient to instruct pluripotent stem cells (PSCs) to acquire a neuronal identity when delivered with an integrating system, which arises some safety concerns for clinical applications. A non-integrating system based on modified messenger RNA (mmRNA) delivery method, represents a valuable alternative to lentiviral-based approaches. The ability of NGN2 mmRNA to instruct PSC fate change has not been thoroughly investigated yet. Here we aimed at understanding whether the use of an NGN2 mmRNA-based approach combined with a miniaturized system, which allows a higher transfection efficiency in a cost-effective system, is able to drive human induced PSCs (hiPSCs) toward the neuronal lineage. We show that NGN2 mRNA alone is able to induce cell fate conversion. Surprisingly, the outcome cell population accounts for multiple phenotypes along the neural development trajectory. We found that this mixed population is mainly constituted by neural stem cells (45% \ub1 18 PAX6 positive cells) and neurons (38% \ub1 8 \u3b2IIITUBULIN positive cells) only when NGN2 is delivered as mmRNA. On the other hand, when the delivery system is lentiviral-based, both providing a constant expression of NGN2 or only a transient pulse, the outcome differentiated population is formed by a clear majority of neurons (88% \ub1 1 \u3b2IIITUBULIN positive cells). Altogether, our data confirm the ability of NGN2 to induce neuralization in hiPSCs and opens a new point of view in respect to the delivery system method when it comes to transcriptional programming applications
A development cooperation Erasmus Mundus partnership for capacity building in earthquake mitigation science and higher education
Successful practices have shown that a community’s capacity to manage and reduce its seismic risk relies on
capitalization on policies, on technology and research results. An important role is played by education, than contribute to
strengthening technical curricula of future practitioners and researchers through university and higher education programs. EUNICE
is a European Commission funded higher education partnership for international development cooperation with the
objective to build capacity of individuals who will operate at institutions located in seismic prone Asian Countries. The project
involves five European Universities, eight Asian universities and four associations and NGOs active in advanced research on
seismic mitigation, disaster risk management and international development. The project consists of a comprehensive mobility
scheme open to nationals from Afghanistan, Bangladesh, China, Nepal, Pakistan, Thailand, Bhutan, India, Indonesia, Malaysia,
Maldives, North Korea, Philippines, and Sri Lanka who plan to enroll in school or conduct research at one of five European
partner universities in Italy, Greece and Portugal. During the 2010-14 time span a total number of 104 mobilities are being
involved in scientific activities at the undergraduate, masters, PhD, postdoctoral and academic-staff exchange levels.
Researchers, future policymakers and practitioners build up their curricula over a range of disciplines in the fields of earthquake
engineering, seismology, disaster risk management and urban planning
EU-NICE, Eurasian University Network for International Cooperation in Earthquakes
Despite the remarkable scientific advancements of earthquake engineering and seismology in many countries,
seismic risk is still growing at a high rate in the world’s most vulnerable communities. Successful practices have shown that a community’s capacity to manage and reduce its seismic risk relies on capitalization on policies, on
technology and research results. An important role is played by education, than contribute to strengthening
technical curricula of future practitioners and researchers through university and higher education programmes.
In recent years an increasing number of initiatives have been launched in this field at the international and global
cooperation level. Cooperative international academic research and training is key to reducing the gap between
advanced and more vulnerable regions. EU-NICE is a European Commission funded higher education
partnership for international development cooperation with the objective to build capacity of individuals who
will operate at institutions located in seismic prone Asian Countries. The project involves five European
Universities, eight Asian universities and four associations and NGOs active in advanced research on seismic
mitigation, disaster risk management and international development.
The project consists of a comprehensive mobility scheme open to nationals from Afghanistan, Bangladesh,
China, Nepal, Pakistan, Thailand, Bhutan, India, Indonesia, Malaysia, Maldives, North Korea, Philippines, and
Sri Lanka who plan to enrol in school or conduct research at one of five European partner universities in Italy,
Greece and Portugal. During the 2010-14 time span a total number of 104 mobilities are being involved in
scientific activities at the undergraduate, masters, PhD, postdoctoral and academic-staff exchange levels.
This high number of mobilities and activities is selected and designed so as to produce an overall increase of
knowledge that can result in an impact on earthquake mitigation. Researchers, future policymakers and
practitioners build up their curricula over a range of disciplines in the fields of engineering, seismology, disaster
risk management and urban planning. Specific educational and research activities focus on earthquake risk
mitigation related topics such as: anti-seismic structural design, structural engineering, advanced computer
structural collapse analysis, seismology, experimental laboratory studies, international and development issues in
disaster risk management, social-economical impact studies, international relations and conflict resolution
A escola doméstica de Brasópolis: Abordagens sobre o currículo para a educação feminina nas montanhas mineiras (1927-1965)
The objective of this research was to understand the expansion of the school institution's curriculum for poor girls in the south of Minas Gerais. The methodological procedure sought to analyze dialectically the local, the state and the national articulations regarding domestic professional education. The sources of study include educational legislation, teaching yearbook, minutes of the institution and the press. The results of the research show that the Escola Doméstica de Brazópolis included in its curriculum important skills for teaching domestic chores and technical subjects destined for the moral and religious improvement of the students. The modification of the school's curricular structure included the inclusion of scientific subjects and training for the teaching course, enabling a favorable environment for economic development and opening up the job market.O objetivo desta pesquisa foi compreender a expansão do currículo da instituição escolar para moças pobres no sul de Minas Gerais. O procedimento metodológico procurou analisar dialeticamente as articulações local, estadual e nacional a respeito do ensino profissional doméstico. As fontes de estudo incluem legislação educacional, anuário de ensino, atas da instituição e a imprensa. Os resultados da pesquisa apontam que a Escola Doméstica de Brazópolis abrangia em seu currículo importantes competências para ensino de tarefas domésticas e matérias técnicas destinadas para aprimoramento moral e religioso das alunas. A modificação da estrutura curricular da escola teve a inclusão de matérias científicas e a formação para o curso de Magistério possibilitando uma conjuntura favorável para desenvolvimento econômico e abertura no mercado de trabalho
Intravital three-dimensional bioprinting
Fabrication of three-dimensional (3D) structures and functional tissues directly in live animals would enable minimally invasive surgical techniques for organ repair or reconstruction. Here, we show that 3D cell-laden photosensitive polymer hydrogels can be bioprinted across and within tissues of live mice, using bio-orthogonal two-photon cycloaddition and crosslinking of the polymers at wavelengths longer than 850 nm. Such intravital 3D bioprinting—which does not create by-products and takes advantage of commonly available multiphoton microscopes for the accurate positioning and orientation of the bioprinted structures into specific anatomical sites—enables the fabrication of complex structures inside tissues of live mice, including the dermis, skeletal muscle and brain. We also show that intravital 3D bioprinting of donor-muscle-derived stem cells under the epimysium of hindlimb muscle in mice leads to the de novo formation of myofibres in the mice. Intravital 3D bioprinting could serve as an in vivo alternative to conventional bioprinting
Intravital three-dimensional bioprinting
Fabrication of three-dimensional (3D) structures and functional tissues directly in live animals would enable minimally invasive surgical techniques for organ repair or reconstruction. Here, we show that 3D cell-laden photosensitive polymer hydrogels can be bioprinted across and within tissues of live mice, using bio-orthogonal two-photon cycloaddition and crosslinking of the polymers at wavelengths longer than 850 nm. Such intravital 3D bioprinting\u2014which does not create by-products and takes advantage of commonly available multiphoton microscopes for the accurate positioning and orientation of the bioprinted structures into specific anatomical sites\u2014enables the fabrication of complex structures inside tissues of live mice, including the dermis, skeletal muscle and brain. We also show that intravital 3D bioprinting of donor-muscle-derived stem cells under the epimysium of hindlimb muscle in mice leads to the de novo formation of myofibres in the mice. Intravital 3D bioprinting could serve as an in vivo alternative to conventional bioprinting
Cellular Fibroma of the Ovary with Multiloculated Macroscopic Characteristics: Case Report
Ovarian fibroma is the commonest benign tumor of the ovarian stroma. The cellular subtype accounts for around 10% of ovarian fibromatous tumors. The cellular fibroma is a tumor of uncertain malignant potential that may recur or be associated with peritoneal implants. Usually these are solid tumors, sometimes with small areas of cystic degeneration. This case is reported to highlight an unusual feature for an ovarian fibroma: the tumor was predominantly cystic with a small solid part; the multiple cavities contents consisted of viscous liquid that solidified under room temperature. The multiloculated cysts, the mucinous contents, and the solid areas simulated a borderline mucinous ovarian tumor on both CT scan and gross pathologic examination
- …