5 research outputs found
Differences in 5'untranslated regions highlight the importance of translational regulation of dosage sensitive genes
Background: Untranslated regions (UTRs) are important mediators of post-transcriptional regulation. The length of UTRs and the composition of regulatory elements within them are known to vary substantially across genes, but little is known about the reasons for this variation in humans. Here, we set out to determine whether this variation, specifically in 5’UTRs, correlates with gene dosage sensitivity. Results: We investigate 5’UTR length, the number of alternative transcription start sites, the potential for alternative splicing, the number and type of upstream open reading frames (uORFs) and the propensity of 5’UTRs to form secondary structures. We explore how these elements vary by gene tolerance to loss-of-function (LoF; using the LOEUF metric), and in genes where changes in dosage are known to cause disease. We show that LOEUF correlates with 5’UTR length and complexity. Genes that are most intolerant to LoF have longer 5’UTRs, greater TSS diversity, and more upstream regulatory elements than their LoF tolerant counterparts. We show that these differences are evident in disease gene-sets, but not in recessive developmental disorder genes where LoF of a single allele is tolerated. Conclusions: Our results confirm the importance of post-transcriptional regulation through 5'UTRs in tight regulation of mRNA and protein levels, particularly for genes where changes in dosage are deleterious and lead to disease. Finally, to support gene-based investigation we release a web-based browser tool, VuTR, that supports exploration of the composition of individual 5'UTRs and the impact of genetic variation within them
Additional file 1 of Differences in 5'untranslated regions highlight the importance of translational regulation of dosage sensitive genes
Additional file 1: Supplementary Figures
Phase Ib study evaluating safety and clinical activity of the anti-HER3 antibody lumretuzumab combined with the anti-HER2 antibody pertuzumab and paclitaxel in HER3-positive, HER2-low metastatic breast cancer
Purpose To investigate the safety and clinical activity of comprehensive human epidermal growth factor receptor (HER) family receptor inhibition using lumretuzumab (anti-HER3) and pertuzumab (anti-HER2) in combination with paclitaxel in patients with metastatic breast cancer (MBC). Methods This phase Ib study enrolled 35 MBC patients (first line or higher) with HER3-positive and HER2-low (immunohistochemistry 1+ to 2+ and in-situ hybridization negative) tumors. Patients received lumretuzumab (1000 mg in Cohort 1; 500 mg in Cohorts 2 and 3) plus pertuzumab (840 mg loading dose [LD] followed by 420 mg in Cohorts 1 and 2; 420 mg without LD in Cohort 3) every 3 weeks, plus paclitaxel (80 mg/m2 weekly in all cohorts). Patients in Cohort 3 received prophylactic loperamide treatment. Results Diarrhea grade 3 was a dose-limiting toxicity of Cohort 1 defining the maximum tolerated dose of lumretuzumab when given in combination with pertuzumab and paclitaxel at 500 mg every three weeks. Grade 3 diarrhea decreased from 50% (Cohort 2) to 30.8% (Cohort 3) with prophylactic loperamide administration and omission of the pertuzumab LD, nonetheless, all patients still experienced diarrhea. In first-line MBC patients, the objective response rate in Cohorts 2 and 3 was 55% and 38.5%, respectively. No relationship between HER2 and HER3 expression or somatic mutations and clinical response was observed. Conclusions Combination treatment with lumretuzumab, pertuzumab and paclitaxel was associated with a high incidence of diarrhea. Despite the efforts to alter dosing, the therapeutic window remained too narrow to warrant further clinical development