83 research outputs found

    Linoleic and docosahexaenoic acids in human milk have opposite relationships with cognitive test performance in a sample of 28 countries

    Get PDF
    a b s t r a c t Polyunsaturated fatty acids play critical roles in brain development and function, and their levels in human breast milk closely reflect the long-term diet. The fatty acid contents of human milk samples from 28 countries were used to predict averaged 2009 and 2012 test scores in mathematics, reading, and science from the Program for International Student Assessment. All test scores were positively related to milk docosahexaenoic acid (r¼ 0.48 to 0.55), and negatively related to linoleic acid (r ¼ À0.28 to À 0.56). Together, these two human milk fatty acids explained 46% to 48% of the variance in scores, with no improvement in predictive power when socioeconomic variables were added to the regression. The (log) ratio of linoleic to arachidonic acid was negatively related to scores (r¼ À0.45 to À 0.48). Statistical effects were similar for the two sexes. In a separate US sample, estimated dietary linoleic was negatively related to the levels of all long-chain n-3 and n-6 plasma fatty acids. High levels of dietary linoleic may impair cognition by decreasing both docosahexaenoic and arachidonic acids in the brain

    Fatty Acid Composition in the Mature Milk of Bolivian Forager-Horticulturalists: Controlled Comparisons With a US Sample

    Get PDF
    Breast milk fatty acid (FA) composition varies greatly among individual women, including in percentages of the long-chain polyunsaturated FAs (LCPUFA) 20:4n-6 (arachidonic acid, AA) and 22:6n-3 (docosahexaenoic acid, DHA), which are important for infant neurological development. It has been suggested that owing to wide variation in milk LCPUFA and low DHA in Western diets, standards of milk FA composition should be derived from populations consuming traditional diets. We collected breast milk samples from Tsimane women at varying lactational stages (6–82 weeks). The Tsimane are an indigenous, natural fertility, subsistence-level population living in Amazonia Bolivia. Tsimane samples were matched by lactational stage to samples from a US milk bank, and analysed concurrently for FA composition by gas-liquid chromatography. We compared milk FA composition between Tsimane (n = 35) and US (n = 35) mothers, focusing on differences in LCPUFA percentages that may be due to population-typical dietary patterns. Per total FAs, the percentages of AA, DHA, total n-3 and total n-6 LCPUFA were significantly higher among Tsimane mothers. Mean percentages of 18:2n-6 (linoleic acid) and trans FAs were significantly higher among US mothers. Tsimane mothers’ higher milk n-3 and n-6 LCPUFA percentages may be due to their regular consumption of wild game and freshwater fish, as well as comparatively lower intakes of processed foods and oils that may interfere with LCPUFA synthesis

    Fatty acid composition in the mature milk of Bolivian foragerhorticulturalists: Controlled comparisons with a U.S. sample.

    Get PDF
    Abstract Breast milk fatty acid (FA) composition varies greatly among individual women, including in percentages of the long-chain polyunsaturated FAs (LCPUFA) 20:4n-6 (arachidonic acid, AA) and 22:6n-3 (docosahexaenoic acid, DHA), which are important for infant neurological development. It has been suggested that owing to wide variation in milk LCPUFA and low DHA in Western diets, standards of milk FA composition should be derived from populations consuming traditional diets. We collected breast milk samples from Tsimane women at varying lactational stages (6-82 weeks). The Tsimane are an indigenous, natural fertility, subsistence-level population living in Amazonia Bolivia. Tsimane samples were matched by lactational stage to samples from a US milk bank, and analysed concurrently for FA composition by gas-liquid chromatography. We compared milk FA composition between Tsimane (n = 35) and US (n = 35) mothers, focusing on differences in LCPUFA percentages that may be due to population-typical dietary patterns. Per total FAs, the percentages of AA, DHA, total n-3 and total n-6 LCPUFA were significantly higher among Tsimane mothers. Mean percentages of 18:2n-6 (linoleic acid) and trans FAs were significantly higher among US mothers. Tsimane mothers' higher milk n-3 and n-6 LCPUFA percentages may be due to their regular consumption of wild game and freshwater fish, as well as comparatively lower intakes of processed foods and oils that may interfere with LCPUFA synthesis

    Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury.

    Get PDF
    Crossed facilitatory interactions in the corticospinal pathway are impaired in humans with chronic incomplete spinal cord injury (SCI). The extent to which crossed facilitation is affected in muscles above and below the injury remains unknown. To address this question we tested 51 patients with neurological injuries between C2-T12 and 17 age-matched healthy controls. Using transcranial magnetic stimulation we elicited motor evoked potentials (MEPs) in the resting first dorsal interosseous, biceps brachii, and tibialis anterior muscles when the contralateral side remained at rest or performed 70% of maximal voluntary contraction (MVC) into index finger abduction, elbow flexion, and ankle dorsiflexion, respectively. By testing MEPs in muscles with motoneurons located at different spinal cord segments we were able to relate the neurological level of injury to be above, at, or below the location of the motoneurons of the muscle tested. We demonstrate that in patients the size of MEPs was increased to a similar extent as in controls in muscles above the injury during 70% of MVC compared to rest. MEPs remained unchanged in muscles at and within 5 segments below the injury during 70% of MVC compared to rest. However, in muscles beyond 5 segments below the injury the size of MEPs increased similar to controls and was aberrantly high, 2-fold above controls, in muscles distant (>15 segments) from the injury. These aberrantly large MEPs were accompanied by larger F-wave amplitudes compared to controls. Thus, our findings support the view that corticospinal degeneration does not spread rostral to the lesion, and highlights the potential of caudal regions distant from an injury to facilitate residual corticospinal output after SCI

    Effects of adult temperature on gene expression in a butterfly: identifying pathways associated with thermal acclimation

    No full text
    Abstract Background Phenotypic plasticity is a pervasive property of all organisms and considered to be of key importance for dealing with environmental variation. Plastic responses to temperature, which is one of the most important ecological factors, have received much attention over recent decades. A recurrent pattern of temperature-induced adaptive plasticity includes increased heat tolerance after exposure to warmer temperatures and increased cold tolerance after exposure to cooler temperatures. However, the mechanisms underlying these plastic responses are hitherto not well understood. Therefore, we here investigate effects of adult acclimation on gene expression in the tropical butterfly Bicyclus anynana, using an RNAseq approach. Results We show that several antioxidant markers (e.g. peroxidase, cytochrome P450) were up-regulated at a higher temperature compared with a lower adult temperature, which might play an important role in the acclamatory responses subsequently providing increased heat tolerance. Furthermore, several metabolic pathways were up-regulated at the higher temperature, likely reflecting increased metabolic rates. In contrast, we found no evidence for a decisive role of the heat shock response. Conclusions Although the important role of antioxidant defence mechanisms in alleviating detrimental effects of oxidative stress is firmly established, we speculate that its potentially important role in mediating heat tolerance and survival under stress has been underestimated thus far and thus deserves more attention

    Regional Specializations of the PAZ Proteomes Derived from Mouse Hippocampus, Olfactory Bulb and Cerebellum

    No full text
    Neurotransmitter release as well as structural and functional dynamics at the presynaptic active zone (PAZ) comprising synaptic vesicles attached to the presynaptic plasma membrane are mediated and controlled by its proteinaceous components. Here we describe a novel experimental design to immunopurify the native PAZ-complex from individual mouse brain regions such as olfactory bulb, hippocampus, and cerebellum with high purity that is essential for comparing their proteome composition. Interestingly, quantitative immunodetection demonstrates significant differences in the abundance of prominent calcium-dependent PAZ constituents. Furthermore, we characterized the proteomes of the immunoisolated PAZ derived from the three brain regions by mass spectrometry. The proteomes of the release sites from the respective regions exhibited remarkable differences in the abundance of a large variety of PAZ constituents involved in various functional aspects of the release sites such as calcium homeostasis, synaptic plasticity and neurogenesis. On the one hand, our data support an identical core architecture of the PAZ for all brain regions and, on the other hand, demonstrate that the proteinaceous composition of their presynaptic active zones vary, suggesting that changes in abundance of individual proteins strengthen the ability of the release sites to adapt to specific functional requirements
    • …
    corecore