479 research outputs found
Non-conventional superconducting fluctuations in Ba(Fe1-xRhx)2As2 iron-based superconductors
We measured the static uniform spin susceptibility of
Ba(FeRh)As iron-based superconductors, over a broad range
of doping () and magnetic fields. At small fields ( 1 kOe) we observed, above the transition temperature , the occurrence
of precursor diamagnetism, which is not ascribable to the Ginzburg-Landau
theory. On the contrary, our data fit a phase fluctuation model, which has been
used to interpret a similar phenomenology occurring in the high- cuprate
superconductors. On the other hand, in presence of strong fields the
unconventional fluctuating diamagnetism is suppressed, whereas 3D fluctuations
are found, in agreement with literature
Spin dynamics in molecular ring nanomagnets: Significant effect of acoustic phonons and magnetic anisotropies
The nuclear spin-lattice relaxation rate 1/T_1_ is calculated for magnetic
ring clusters by fully diagonalizing their microscopic spin Hamiltonians.
Whether the nearest-neighbor exchange interaction J is ferromagnetic or
antiferromagnetic, 1/T_1_ versus temperature T in ring nanomagnets may be
peaked at around k_B_T=|J| provided the lifetime broadening of discrete energy
levels is in proportion to T^3^. Experimental findings for ferromagnetic and
antiferromagnetic Cu^II^ rings are reproduced with crucial contributions of
magnetic anisotropies as well as acoustic phonons.Comment: 5 pages with 5 figures embedded, to be published in J. Phys. Soc.
Jpn. 75, No. 10 (2006
Tunneling splitting of magnetic levels in Fe8 detected by 1H NMR cross relaxation
Measurements of proton NMR and the spin lattice relaxation rate 1/T1 in the
octanuclear iron (III) cluster [Fe8(N3C6H15)6O2(OH)12][Br8 9H2O], in short Fe8,
have been performed at 1.5 K in a powder sample aligned along the main
anisotropy z axis, as a function of a transverse magnetic field (i.e.,
perpendicular to the main easy axis z). A big enhancement of 1/T1 is observed
over a wide range of fields (2.5-5 T), which can be attributed to the tunneling
dynamics; in fact, when the tunneling splitting of the pairwise degenerate
m=+-10 states of the Fe8 molecule becomes equal to the proton Larmor frequency
a very effective spin lattice relaxation channel for the nuclei is opened. The
experimental results are explained satisfactorily by considering the
distribution of tunneling splitting resulting from the distribution of the
angles in the hard xy plane for the aligned powder, and the results of the
direct diagonalization of the model Hamiltonian.Comment: J. Appl. Phys., in pres
Two-bands effect on the superconducting fluctuating diamagnetism in MgB₂
The field dependence of the magnetization above the transition temperature Tc
in MgB₂ is shown to evidence a diamagnetic contribution consistent with
superconducting fluctuations reflecting both the σ and π bands. In
particular, the upturn field Hup in the magnetization curve, related to the
incipient effect of the magnetic field in quenching the fluctuating pairs,
displays a double structure, in correspondence to two correlation lengths. The
experimental findings are satisfactorily described by the extension to the
diamagnetism of a recent theory for paraconductivity, in the framework of a
zero-dimensional model for the fluctuating superconducting droplets above Tc
Proton NMR for Measuring Quantum-Level Crossing in the Magnetic Molecular Ring Fe10
The proton nuclear spin-lattice relaxation rate 1/T1 has been measured as a
function of temperature and magnetic field (up to 15 T) in the molecular
magnetic ring Fe10. Striking enhancement of 1/T1 is observed around magnetic
field values corresponding to a crossing between the ground state and the
excited states of the molecule. We propose that this is due to a
cross-relaxation effect between the nuclear Zeeman reservoir and the reservoir
of the Zeeman levels of the molecule. This effect provides a powerful tool to
investigate quantum dynamical phenomena at level crossing.Comment: Four pages, to appear in Phys.Rev.Let
Probing spin dynamics and quantum relaxation in LiY0.998Ho0.002F4 via 19F NMR
We report measurements of 19F nuclear spin-lattice relaxation 1/T1 as a
function of temperature and external magnetic field in LiY0.998Ho0.002F4 single
crystal, a single-ion magnet exhibiting interesting quantum effects. The 19F
1/T1 is found to depend on the coupling with the diluted rare-earth (RE)
moments. Depending on the temperature range, a fast spin diffusion regime or a
diffusion limited regime is encountered. In both cases we find it possible to
use the 19F nucleus as a probe of the rare-earth spin dynamics. The results for
1/T1 show a behavior similar to that observed in molecular nanomagnets, a
result which we attribute to the discreteness of the energy levels in both
cases. At intermediate temperatures the lifetime broadening of the crystal
field split RE magnetic levels follows a T3 power law. At low temperature the
field dependence of 1/T1 shows peaks in correspondence to the critical magnetic
fields for energy level crossings (LC). The results can be explained by
inelastic scattering between the fluorine nuclear spins and the RE magnetic
levels. A key result of this study is that the broadening of the levels at LC
is found to be become extremely small at low temperatures, about 1.7 mT, a
value which is comparable to the weak dipolar fields at the RE lattice
positions. Thus, unlike the molecular magnets, decoherence effects are strongly
suppressed, and it may be possible to measure directly the level repulsions at
avoided level crossings.Comment: 21 pages, 5 figure
- …