556 research outputs found

    A novel SDS-stable dimer of a heterogeneous nuclear ribonucleoprotein at presynaptic terminals of squid neurons

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Neuroscience 300 (2015): 381-392, doi:10.1016/j.neuroscience.2015.05.040.The presence of mRNAs in synaptic terminals and their regulated translation are important factors in neuronal communication and plasticity. Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are involved in the translocation, stability, and subcellular localization of mRNA and the regulation of its translation. Defects in these processes and mutations in components of the hnRNP complexes have been related to the formation of cytoplasmic inclusion bodies and neurodegenerative diseases. Despite much data on mRNA localization and evidence for protein synthesis, as well as the presence of translation machinery, in axons and presynaptic terminals, the identity of RNA-binding proteins involved in RNA transport and function in presynaptic regions is lacking. We previously characterized a strongly basic RNA-binding protein (p65), member of the hnRNP A/B subfamily, in squid presynaptic terminals. Intriguingly, in SDS-PAGE, p65 migrated as a 65 kDa protein, whereas members of the hnRNP A/B family typically have molecular masses ranging from 35 to 42 kDa. In this report we present further biochemical and molecular characterization that shows endogenous p65 to be an SDS-stable dimer composed of ~37 kDa hnRNPA/B-like subunits. We cloned and expressed a recombinant protein corresponding to squid hnRNPA/B-like protein and showed its propensity to aggregate and form SDS-stable dimers in vitro. Our data suggest that this unique hnRNPA/B-like protein co-localizes with synaptic vesicle protein 2 and RNA-binding protein ELAV and thus may serve as a link between local mRNA processing and presynaptic function and regulation.Research was supported by grants to REL from the Fundação de Amparo Ă  Pesquisa do Estado de Sao Paulo (FAPESP), the Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq) and the Fundação de Apoio ao Ensino, Pesquisa e AssistĂȘncia do Hospital das ClĂ­nicas da FMRP-USP (FAEPA). JAD received financial support from the RI-INBRE Program Grant #8 P20 GM103430-12 from the National Institute of General Medical Sciences, NIH, Bethesda, MD. DTPL and GSL received research fellowships from FAPESP and CNPq. REL and JCR received the Productivity-in-Research fellowship from CNPq

    The Discovery and Nature of Optical Transient CSS100217:102913+404220

    Get PDF
    We report on the discovery and observations of the extremely luminous optical transient CSS100217:102913+404220 (CSS100217 hereafter). Spectroscopic observations show this transient was coincident with a galaxy at redshift z=0.147, and reached an apparent magnitude of V ~ 16.3. After correcting for foreground Galactic extinction we determine the absolute magnitude to be M_V =-22.7 approximately 45 days after maximum light. Based on our unfiltered optical photometry the peak optical emission was L = 1.3 x 10^45 erg s^-1, and over a period of 287 rest-frame days had an integrated bolometric luminosity of 1.2 x 10^52 erg. Analysis of the pre-outburst SDSS spectrum of the source shows features consistent with a Narrow-line Seyfert1 (NLS1) galaxy. High-resolution HST and Keck followup observations show the event occurred within 150pc of nucleus of the galaxy, suggesting a possible link to the active nuclear region. However, the rapid outburst along with photometric and spectroscopic evolution are much more consistent with a luminous supernova. Line diagnostics suggest that the host galaxy is undergoing significant star formation. We use extensive follow-up of the event along with archival CSS and SDSS data to investigate the three most likely sources of such an event; 1) an extremely luminous supernova; 2) the tidal disruption of a star by the massive nuclear black hole; 3) variability of the central AGN. We find that CSS100217 was likely an extremely luminous type IIn supernova that occurred within range of the narrow-line region of an AGN. We discuss how similar events may have been missed in past supernova surveys because of confusion with AGN activity.Comment: submitted to Ap

    MEMS-Based Communications Systems for Space-Based Applications

    Get PDF
    As user demand for higher capacity and flexibility in communications satellites increases, new ways to cope with the inherent limitations posed by the prohibitive mass and power consumption, needed to satisfy those requirements, are under investigation. Recent studies suggest that while new satellite architectures are necessary to enable multi-user, multi-data rate, multi-location satellite links, these new architectures will inevitably increase power consumption, and in turn, spacecraft mass, to such an extent that their successful implementation will demand novel lightweight/low power hardware approaches. In this paper, following a brief introduction to the fundamentals of communications satellites, we address the impact of micro-electro-mechanical systems (MEMS) technology, in particular micro-electro-mechanical (MEM) switches to mitigate the above mentioned problems and show that low-loss/wide bandwidth MEM switches will go a long way towards enabling higher capacity and flexibility space-based communications systems

    Ecological Homogenization of Urban USA

    Get PDF
    A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multi-disciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; Minneapolis–St Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales

    A Multi-City Comparison of Front and Backyard Differences in Plant Species Diversity and Nitrogen Cycling in Residential landscapes

    Get PDF
    We hypothesize that lower public visibility of residential backyards reduces households’ desire for social conformity, which alters residential land management and produces differences in ecological composition and function between front and backyards. Using lawn vegetation plots (7 cities) and soil cores (6 cities), we examine plant species richness and evenness and nitrogen cycling of lawns in Boston, Baltimore, Miami, Minneapolis-St. Paul, Phoenix, Los Angeles (LA), and Salt Lake City (SLC). Seven soil nitrogen measures were compared because different irrigation and fertilization practices may vary between front and backyards, which may alter nitrogen cycling in soils. In addition to lawn-only measurements, we collected and analyzed plant species richness for entire yards—cultivated (intentionally planted) and spontaneous (self-regenerating)—for front and backyards in just two cities: LA and SLC. Lawn plant species and soils were not different between front and backyards in our multi-city comparisons. However, entire-yard plant analyses in LA and SLC revealed that frontyards had significantly fewer species than backyards for both cultivated and spontaneous species. These results suggest that there is a need for a more rich and social-ecologically nuanced understanding of potential residential, household behaviors and their ecological consequences

    Luminosity-Metallicity Relation for dIrr Galaxies in the Near-Infrared

    Full text link
    (abridged) The present work is a first step to collect homogeneous abundances and near-infrared (NIR) luminosities for a sample of dwarf irregular (dIrr) galaxies, located in nearby groups. The use of NIR luminosities is intended to provide a better proxy to mass than the blue luminosities commonly used in the literature; in addition, selecting group members reduces the impact of uncertain distances. Accurate abundances are derived to assess the galaxy metallicity. Optical spectra are collected for Hii regions in the dIrrs, allowing the determination of oxygen abundances by means of the temperature-sensitive method. For each dIrr galaxy H-band imaging is performed and the total magnitudes are measured via surface photometry. This high-quality database allows us to build a well-defined luminosity-metallicity relation in the range -13 >= M(H) >= -20. The scatter around its linear fit is reduced to 0.11 dex, the lowest of all relations currently available. There might exist a difference between the relation for dIrrs and the relation for giant galaxies, although a firm conclusion should await direct abundance determinations for a significant sample of massive galaxies. This new dataset provides an improved luminosity-metallicity relation, based on a standard NIR band, for dwarf star-forming galaxies. The relation can now be compared with some confidence to the predictions of models of galaxy evolution. Exciting follow-ups of this work are (a) exploring groups with higher densities, (b) exploring nearby galaxy clusters to probe environmental effects on the luminosity-metallicity relation, and (c) deriving direct oxygen abundances in the central regions of star-forming giant galaxies, to settle the question of a possible dichotomy between the chemical evolution of dwarfs and that of massive galaxies.Comment: 23 pages, 10 figures, accepted by A&

    Continental-scale homogenization of residential lawn plant communities

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Landscape and Urban Planning 165 (2017): 54-63, doi:10.1016/j.landurbplan.2017.05.004.Residential lawns are highly managed ecosystems that occur in urbanized landscapes across the United States. Because they are ubiquitous, lawns are good systems in which to study the potential homogenizing effects of urban land use and management together with the continental-scale effects of climate on ecosystem structure and functioning. We hypothesized that similar homeowner preferences and management in residential areas across the United States would lead to low plant species diversity in lawns and relatively homogeneous vegetation across broad geographical regions. We also hypothesized that lawn plant species richness would increase with regional temperature and precipitation due to the presence of spontaneous, weedy vegetation, but would decrease with household income and fertilizer use. To test these predictions, we compared plant species composition and richness in residential lawns in seven U.S. metropolitan regions. We also compared species composition in lawns with understory vegetation in minimally-managed reference areas in each city. As expected, the composition of cultivated turfgrasses was more similar among lawns than among reference areas, but this pattern also held among spontaneous species. Plant species richness and diversity varied more among lawns than among reference areas, and more diverse lawns occurred in metropolitan areas with higher precipitation. Native forb diversity increased with precipitation and decreased with income, driving overall lawn diversity trends with these predictors as well. Our results showed that both management and regional climate shaped lawn species composition, but the overall homogeneity of species regardless of regional context strongly suggested that management was a more important driver.This research was supported by the Macrosystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate at the National Science Foundation (NSF) under grants EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, and 121238320

    Climate and lawn management interact to control C4 plant distribution in residential lawns across seven U.S. cities.

    Get PDF
    Author Posting. © Ecological Society of America, 2019. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Trammell, T. L. E., Pataki, D. E., Still, C. J., Ehleringer, J. R., Avolio, M. L., Bettez, N., Cavender-Bares, J., Groffman, P. M., Grove, M., Hall, S. J., Heffernan, J., Hobbie, S. E., Larson, K. L., Morse, J. L., Neill, C., Nelson, K. C., O'Neil-Dunne, J., Pearse, W. D., Chowdhury, R. R., Steele, M., & Wheeler, M. M. Climate and lawn management interact to control C4 plant distribution in residential lawns across seven U.S. cities. Ecological Applications, 29(4), (2019): e01884, doi: 10.1002/eap.1884.In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (ÎŽ13C, index of C3/C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4 carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant ÎŽ13C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3/C4 competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3/C4 plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities.This research was funded by a series of collaborative grants from the U.S. National Science Foundation Macrosystems Biology Program (EF‐1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 121238320). The authors thank La'Shaye Ervin, William Borrowman, Moumita Kundu, and Barbara Uhl for field and laboratory assistance

    Climate and Lawn Management Interact to Control C\u3csub\u3e4\u3c/sub\u3e Plant Distribution in Residential Lawns Across Seven U.S. Cities

    Get PDF
    In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (ÎŽ13C, index of C3/C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant ÎŽ13C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3/C4competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3/C4plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities
    • 

    corecore