5,536 research outputs found

    Coxeter Groups and Wavelet Sets

    Full text link
    A traditional wavelet is a special case of a vector in a separable Hilbert space that generates a basis under the action of a system of unitary operators defined in terms of translation and dilation operations. A Coxeter/fractal-surface wavelet is obtained by defining fractal surfaces on foldable figures, which tesselate the embedding space by reflections in their bounding hyperplanes instead of by translations along a lattice. Although both theories look different at their onset, there exist connections and communalities which are exhibited in this semi-expository paper. In particular, there is a natural notion of a dilation-reflection wavelet set. We prove that dilation-reflection wavelet sets exist for arbitrary expansive matrix dilations, paralleling the traditional dilation-translation wavelet theory. There are certain measurable sets which can serve simultaneously as dilation-translation wavelet sets and dilation-reflection wavelet sets, although the orthonormal structures generated in the two theories are considerably different

    Modular frames for Hilbert C*-modules and symmetric approximation of frames

    Full text link
    We give a comprehensive introduction to a general modular frame construction in Hilbert C*-modules and to related modular operators on them. The Hilbert space situation appears as a special case. The reported investigations rely on the idea of geometric dilation to standard Hilbert C*-modulesover unital C*-algebras that admit an orthonormal Riesz basis. Interrelations and applications to classical linear frame theory are indicated. As an application we describe the nature of families of operators {S_i} such that SUM_i S*_iS_i=id_H, where H is a Hilbert space. Resorting to frames in Hilbert spaces we discuss some measures for pairs of frames to be close to one another. Most of the measures are expressed in terms of norm-distances of different kinds of frame operators. In particular, the existence and uniqueness of the closest (normalized) tight frame to a given frame is investigated. For Riesz bases with certain restrictions the set of closetst tight frames often contains a multiple of its symmetric orthogonalization (i.e. L\"owdin orthogonalization).Comment: SPIE's Annual Meeting, Session 4119: Wavelets in Signal and Image Processing; San Diego, CA, U.S.A., July 30 - August 4, 2000. to appear in: Proceedings of SPIE v. 4119(2000), 12 p
    • …
    corecore