37 research outputs found

    Topological descriptors for coral reef resilience using a stochastic spatial model

    Full text link
    A complex interplay between species governs the evolution of spatial patterns in ecology. An open problem in the biological sciences is characterizing spatio-temporal data and understanding how changes at the local scale affect global dynamics/behavior. We present a toolkit of multiscale methods and use them to analyze coral reef resilience and dynamics.Here, we extend a well-studied temporal mathematical model of coral reef dynamics to include stochastic and spatial interactions and then generate data to study different ecological scenarios. We present descriptors to characterize patterns in heterogeneous spatio-temporal data surpassing spatially averaged measures. We apply these descriptors to simulated coral data and demonstrate the utility of two topological data analysis techniques--persistent homology and zigzag persistence--for characterizing the spatiotemporal evolution of reefs and generating insight into mechanisms of reef resilience. We show that the introduction of local competition between species leads to the appearance of coral clusters in the reef. Furthermore, we use our analyses to distinguish the temporal dynamics that stem from different initial configurations of coral, showing that the neighborhood composition of coral sites determines their long-term survival. Finally, we use zigzag persistence to quantify spatial behavior in the metastable regime as the level of fish grazing on algae varies and determine which spatial configurations protect coral from extinction in different environments

    Hydrogeomorphology of the Hyporheic Zone: Stream Solute and Fine Particle Interactions With a Dynamic Streambed

    Get PDF
    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 ÎĽm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and flood mobilization of solutes and fine particulates. These hydrogeomorphic relationships have implications for microbial respiration of organic matter, carbon and nutrient cycling, and fate of contaminants in streams

    Iterative Near-Term Ecological Forecasting: Needs, Opportunities, And Challenges

    Get PDF
    Two foundational questions about sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect these trajectories?” Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward

    Appendix E. Depth/redox potential cases evaluated in model and corresponding regression coefficients for depth effect, f(h–zdat).

    No full text
    Depth/redox potential cases evaluated in model and corresponding regression coefficients for depth effect, f(h–zdat)
    corecore