18,117 research outputs found

    Chaotic string-capture by black hole

    Full text link
    We consider a macroscopic charge-current carrying (cosmic) string in the background of a Schwarzschild black hole. The string is taken to be circular and is allowed to oscillate and to propagate in the direction perpendicular to its plane (that is parallel to the equatorial plane of the black hole). Nurmerical investigations indicate that the system is non-integrable, but the interaction with the gravitational field of the black hole anyway gives rise to various qualitatively simple processes like "adiabatic capture" and "string transmutation".Comment: 13 pages Latex + 3 figures (not included), Nordita 93/55

    Null Strings in Schwarzschild Spacetime

    Get PDF
    The null string equations of motion and constraints in the Schwarzschild spacetime are given. The solutions are those of the null geodesics of General Relativity appended by a null string constraint in which the "constants of motion" depend on the world-sheet spatial coordinate. Because of the extended nature of a string, the physical interpretation of the solutions is completely different from the point particle case. In particular, a null string is generally not propagating in a plane through the origin, although each of its individual points is. Some special solutions are obtained and their physical interpretation is given. Especially, the solution for a null string with a constant radial coordinate rr moving vertically from the south pole to the north pole around the photon sphere, is presented. A general discussion of classical null/tensile strings as compared to massless/massive particles is given. For instance, tensile circular solutions with a constant radial coordinate rr do not exist at all. The results are discussed in relation to the previous literature on the subject.Comment: 16 pages, REVTEX, no figure

    A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios

    Full text link
    We re-analyse the kinematics of the system of blue horizontal branch field (BHBF) stars in the Galactic halo (in particular the outer halo), fitting the kinematics with the model of radial and tangential velocity dispersions in the halo as a function of galactocentric distance r proposed by Sommer-Larsen, Flynn & Christensen (1994), using a much larger sample (almost 700) of BHBF stars. The basic result is that the character of the stellar halo velocity ellipsoid changes markedly from radial anisotropy at the sun to tangential anisotropy in the outer parts of the Galactic halo (r greater than approx 20 kpc). Specifically, the radial component of the stellar halo's velocity ellipsoid decreases fairly rapidly beyond the solar circle, from approx 140 +/- 10 km/s at the sun, to an asymptotic value of 89 +/- 19 km/s at large r. The rapid decrease in the radial velocity dispersion is matched by an increase in the tangential velocity dispersion, with increasing r. Our results may indicate that the Galaxy formed hierarchically (partly or fully) through merging of smaller subsystems - the 'bottom-up' galaxy formation scenario, which for quite a while has been favoured by most theorists and recently also has been given some observational credibility by HST observations of a potential group of small galaxies, at high redshift, possibly in the process of merging to a larger galaxy (Pascarelle et al 1996).Comment: Latex, 16 pages. 2 postscript figures. Submitted to the Astrophysical Journal. also available at http://astro.utu.fi/~cflynn/outerhalo.htm

    Young and intermediate-age massive star clusters

    Full text link
    An overview of our current understanding of the formation and evolution of star clusters is given, with main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a few percent of star formation occurs in clusters that remain bound, although it is not yet clear if this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on timescales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (> 10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5 Msun. In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x 10^6 Msun. The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. PDFLaTeX, requires rspublic.cls style fil

    Exact String Solutions in Nontrivial Backgrounds

    Full text link
    We show how the classical string dynamics in DD-dimensional gravity background can be reduced to the dynamics of a massless particle constrained on a certain surface whenever there exists at least one Killing vector for the background metric. We obtain a number of sufficient conditions, which ensure the existence of exact solutions to the equations of motion and constraints. These results are extended to include the Kalb-Ramond background. The D1D1-brane dynamics is also analyzed and exact solutions are found. Finally, we illustrate our considerations with several examples in different dimensions. All this also applies to the tensionless strings.Comment: 22 pages, LaTeX, no figures; V2:Comments and references added; V3:Discussion on the properties of the obtained solutions extended, a reference and acknowledgment added; V4:The references renumbered, to appear in Phys Rev.

    From p-branes to Cosmology

    Get PDF
    We study the relationship between static p-brane solitons and cosmological solutions of string theory or M-theory. We discuss two different ways in which extremal p-branes can be generalised to non-extremal ones, and show how wide classes of recently discussed cosmological models can be mapped into non-extremal p-brane solutions of one of these two kinds. We also extend previous discussions of cosmological solutions to include some that make use of cosmological-type terms in the effective action that can arise from the generalised dimensional reduction of string theory or M-theory.Comment: Latex, 24 pages, no figur

    Stable and Unstable Circular Strings in Inflationary Universes

    Full text link
    It was shown by Garriga and Vilenkin that the circular shape of nucleated cosmic strings, of zero loop-energy in de Sitter space, is stable in the sense that the ratio of the mean fluctuation amplitude to the loop radius is constant. This result can be generalized to all expanding strings (of non-zero loop-energy) in de Sitter space. In other curved spacetimes the situation, however, may be different. In this paper we develop a general formalism treating fluctuations around circular strings embedded in arbitrary spatially flat FRW spacetimes. As examples we consider Minkowski space, de Sitter space and power law expanding universes. In the special case of power law inflation we find that in certain cases the fluctuations grow much slower that the radius of the underlying unperturbed circular string. The inflation of the universe thus tends to wash out the fluctuations and to stabilize these strings.Comment: 15 pages Latex, NORDITA 94/14-

    Circular String-Instabilities in Curved Spacetime

    Full text link
    We investigate the connection between curved spacetime and the emergence of string-instabilities, following the approach developed by Loust\'{o} and S\'{a}nchez for de Sitter and black hole spacetimes. We analyse the linearised equations determining the comoving physical (transverse) perturbations on circular strings embedded in Schwarzschild, Reissner-Nordstr\"{o}m and de Sitter backgrounds. In all 3 cases we find that the "radial" perturbations grow infinitely for r0r\rightarrow 0 (ring-collapse), while the "angular" perturbations are bounded in this limit. For rr\rightarrow\infty we find that the perturbations in both physical directions (perpendicular to the string world-sheet in 4 dimensions) blow up in the case of de Sitter space. This confirms results recently obtained by Loust\'{o} and S\'{a}nchez who considered perturbations around the string center of mass.Comment: 24 pages Latex + 2 figures (not included). Observatoire de Paris, Meudon No. 9305

    Hole Spin Coherence in a Ge/Si Heterostructure Nanowire

    Get PDF
    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T20.18 μsT_2^* \sim 0.18~\mathrm{\mu s} exceeds corresponding measurements in III-V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.Comment: 15 pages, 4 figure

    Oil and macroeconomic (in)stability

    Get PDF
    We analyze the role of oil price volatility in reducing U.S. macroeconomic instability. Using a regime-switching structural model we revisit the timing of the Great Moderation and the sources of changes in the volatility of macroeconomic variables. We find that smaller or fewer oil price shocks did not play a major role in explaining the Great Moderation. Instead oil price shocks are recurrent sources of macroeconomic fluctuations. The most important factor reducing macroeconomic variability is a decline in the volatility of other structural shocks (demand and supply). A change to a more responsive monetary policy regime also played a role
    corecore