26 research outputs found
Development of optical methods for real-time whole-brain functional imaging of zebrafish neuronal activity
Each one of us in his life has, at least once, smelled the scent of roses, read one canto of Dante’s Commedia or listened to the sound of the sea from a shell. All of this is possible thanks to the astonishing capabilities of an organ, such as the brain, that allows us to collect and organize perceptions coming from sensory organs and to produce behavioural responses accordingly. Studying an operating brain in a non-invasive way is extremely difficult in mammals, and particularly in humans. In the last decade, a small teleost fish, zebrafish (Danio rerio), has been making its way into the field of neurosciences. The brain of a larval zebrafish is made up of 'only' 100000 neurons and it’s completely transparent, making it possible to optically access it. Here, taking advantage of the best of currently available technology, we devised optical solutions to investigate the dynamics of neuronal activity throughout the entire brain of zebrafish larvae
Bessel beam illumination reduces random and systematic errors in quantitative functional studies using light-sheet microscopy
Light-sheet microscopy (LSM), in combination with intrinsically transparent zebrafish larvae, is a choice method to observe brain function with high frame rates at cellular resolution. Inherently to LSM, however, residual opaque objects cause stripe artifacts, which obscure features of interest and, during functional imaging, modulate fluorescence variations related to neuronal activity. Here, we report how Bessel beams reduce streaking artifacts and produce high-fidelity quantitative data demonstrating a fivefold increase in sensitivity to calcium transients and a 20 fold increase in accuracy in the detection of activity correlations in functional imaging. Furthermore, using principal component analysis, we show that measurements obtained with Bessel beams are clean enough to reveal in one-shot experiments correlations that can not be averaged over trials after stimuli as is the case when studying spontaneous activity. Our results not only demonstrate the contamination of data by systematic and random errors through conventional Gaussian illumination and but,furthermore, quantify the increase in fidelity of such data when using Bessel beams
Whole-brain functional imaging to highlight differences between the diurnal and nocturnal neuronal activity in zebrafish larvae
Most living organisms show highly conserved physiological changes following a
24-hour cycle which goes by the name of circadian rhythm. Among experimental
models, the effects of light-dark cycle have been recently investigated in the
larval zebrafish. Owing to its small size and transparency, this vertebrate
enables optical access to the entire brain. Indeed, the combination of this
organism with light-sheet imaging grants high spatio-temporal resolution
volumetric recording of neuronal activity. This imaging technique, in its
multiphoton variant, allows functional investigations without unwanted visual
stimulation. Here, we employed a custom two-photon light-sheet microscope to
study whole-brain differences in neuronal activity between diurnal and
nocturnal periods in larval zebrafish. We describe for the first time an
activity increase in the low frequency domain of the pretectum and a
frequency-localised activity decrease of the anterior rhombencephalic turning
region during the nocturnal period. Moreover, our data confirm a nocturnal
reduction in habenular activity. Furthermore, whole-brain detrended fluctuation
analysis revealed a nocturnal decrease in the self-affinity of the neuronal
signals in parts of the dorsal thalamus and the medulla oblongata. Our data
show that whole-brain nonlinear light-sheet imaging represents a useful tool to
investigate circadian rhythm effects on neuronal activity.Comment: 18 pages, 6 figure
Effects of excitation light polarization on fluorescence emission in two-photon light-sheet microscopy
Light-sheet microscopy (LSM) is a powerful imaging technique that uses a
planar illumination oriented orthogonally to the detection axis. Two-photon
(2P) LSM is a variant of LSM that exploits the 2P absorption effect for sample
excitation. The light polarization state plays a significant, and often
overlooked, role in 2P absorption processes. The scope of this work is to test
whether using different polarization states for excitation light can affect the
detected signal levels in 2P LSM imaging of typical biological samples with a
spatially unordered dye population. Supported by a theoretical model, we
compared the fluorescence signals obtained using different polarization states
with various fluorophores (fluorescein, EGFP and GCaMP6s) and different samples
(liquid solution and fixed or living zebrafish larvae). In all conditions, in
agreement with our theoretical expectations, linear polarization oriented
parallel to the detection plane provided the largest signal levels, while
perpendicularly-oriented polarization gave low fluorescence signal with the
biological samples, but a large signal for the fluorescein solution. Finally,
circular polarization generally provided lower signal levels. These results
highlight the importance of controlling the light polarization state in 2P LSM
of biological samples. Furthermore, this characterization represents a useful
guide to choose the best light polarization state when maximization of signal
levels is needed, e.g. in high-speed 2P LSM.Comment: 16 pages, 4 figures. Version of the manuscript accepted for
publication on Biomedical Optics Expres
Reconstruction scheme for excitatory and inhibitory dynamics with quenched disorder: application to zebrafish imaging
An inverse procedure is developed and tested to recover functional and
structural information from global signals of brains activity. The method
assumes a leaky-integrate and fire model with excitatory and inhibitory
neurons, coupled via a directed network. Neurons are endowed with a
heterogenous current value, which sets their associated dynamical regime. By
making use of a heterogenous mean-field approximation, the method seeks to
reconstructing from global activity patterns the distribution of in-coming
degrees, for both excitatory and inhibitory neurons, as well as the
distribution of the assigned currents. The proposed inverse scheme is first
validated against synthetic data. Then, time-lapse acquisitions of a zebrafish
larva recorded with a two-photon light sheet microscope are used as an input to
the reconstruction algorithm. A power law distribution of the in-coming
connectivity of the excitatory neurons is found. Local degree distributions are
also computed by segmenting the whole brain in sub-regions traced from
annotated atlas
Flexible multi-beam light-sheet fluorescence microscope for live imaging without striping artifacts
The development of light-sheet fluorescence microscopy (LSFM) has greatly expanded the experimental capabilities in many biological and biomedical research fields, enabling for example live studies of murine and zebrafish neural activity or of cell growth and division. The key feature of the method is the selective illumination of a sample single plane, providing an intrinsic optical sectioning and allowing direct 2D image recording. On the other hand, this excitation scheme is more affected by absorption or scattering artifacts in comparison to point scanning methods, leading to un-even illumination. We present here an easily implementable method, based on acousto-optical deflectors (AOD), to overcome this obstacle. We report the advantages provided by flexible and fast AODs in generating simultaneous angled multiple beams from a single laser beam and in fast light sheet pivoting and we demonstrate the suppression of illumination artifacts
Fast whole-brain imaging of seizures in zebrafish larvae by two-photon light-sheet microscopy
Light-sheet fluorescence microscopy (LSFM) enables real-time whole-brain
functional imaging in zebrafish larvae. Conventional one photon LSFM can
however induce undesirable visual stimulation due to the use of visible
excitation light. The use of two-photon (2P) excitation, employing
near-infrared invisible light, provides unbiased investigation of neuronal
circuit dynamics. However, due to the low efficiency of the 2P absorption
process, the imaging speed of this technique is typically limited by the
signal-to-noise-ratio. Here, we describe a 2P LSFM setup designed for
non-invasive imaging that enables quintuplicating state-of-the-art volumetric
acquisition rate of the larval zebrafish brain (5 Hz) while keeping low the
laser intensity on the specimen. We applied our system to the study of
pharmacologically-induced acute seizures, characterizing the spatial-temporal
dynamics of pathological activity and describing for the first time the
appearance of caudo-rostral ictal waves (CRIWs).Comment: Replacement: accepted version of the manuscript, to be published in
Biomedical Optics Express. 36 pages, 15 figure
Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector
Confocal detection in digital scanned laser light-sheet fluorescence microscopy (DSLM) has been established as a gold standard method to improve image quality. The selective line detection of a complementary metal-oxide-semiconductor camera (CMOS) working in rolling shutter mode allows the rejection of out-of-focus and scattered light, thus reducing background signal during image formation. Most modern CMOS have two rolling shutters, but usually only a single illuminating beam is used, halving the maximum obtainable frame rate. We report on the capability to recover the full image acquisition rate via dual confocal DSLM by using an acousto-optic deflector. Such a simple solution enables us to independently generate, control and synchronize two beams with the two rolling slits on the camera. We show that the doubling of the imaging speed does not affect the confocal detection high contrast