1,818 research outputs found
Double radiative pion capture on hydrogen and deuterium and the nucleon's pion cloud
We report measurements of double radiative capture in pionic hydrogen and
pionic deuterium. The measurements were performed with the RMC spectrometer at
the TRIUMF cyclotron by recording photon pairs from pion stops in liquid
hydrogen and deuterium targets. We obtained absolute branching ratios of for hydrogen and for deuterium, and
relative branching ratios of double radiative capture to single radiative
capture of for hydrogen
and for
deuterium. For hydrogen, the measured branching ratio and photon energy-angle
distributions are in fair agreement with a reaction mechanism involving the
annihilation of the incident on the cloud of the target proton.
For deuterium, the measured branching ratio and energy-angle distributions are
qualitatively consistent with simple arguments for the expected role of the
spectator neutron. A comparison between our hydrogen and deuterium data and
earlier beryllium and carbon data reveals substantial changes in the relative
branching ratios and the energy-angle distributions and is in agreement with
the expected evolution of the reaction dynamics from an annihilation process in
S-state capture to a bremsstrahlung process in P-state capture. Lastly, we
comment on the relevance of the double radiative process to the investigation
of the charged pion polarizability and the in-medium pion field.Comment: 44 pages, 7 tables, 13 figures, submitted to Phys. Rev.
A multifractal zeta function for cookie cutter sets
Starting with the work of Lapidus and van Frankenhuysen a number of papers
have introduced zeta functions as a way of capturing multifractal information.
In this paper we propose a new multifractal zeta function and show that under
certain conditions the abscissa of convergence yields the Hausdorff
multifractal spectrum for a class of measures
Eddington-limited X-ray Bursts as Distance Indicators. I. Systematic Trends and Spherical Symmetry in Bursts from 4U 1728-34
We investigate the limitations of thermonuclear X-ray bursts as a distance
indicator for the weakly-magnetized accreting neutron star 4U 1728-34. We
measured the unabsorbed peak flux of 81 bursts in public data from the Rossi
X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66
bursts exhibited photospheric radius expansion and were distributed about a
mean bolometric flux of 9.2e-8 erg/cm^2/s, while the remaining (non-radius
expansion) bursts reached 4.5e-8 erg/cm^2/s, on average. The peak fluxes of the
radius-expansion bursts were not constant, exhibiting a standard deviation of
9.4% and a total variation of 46%. These bursts showed significant correlations
between their peak flux and the X-ray colors of the persistent emission
immediately prior to the burst. We also found evidence for quasi-periodic
variation of the peak fluxes of radius-expansion bursts, with a time scale of
approximately 40 d. The persistent flux observed with RXTE/ASM over 5.8 yr
exhibited quasi-periodic variability on a similar time scale. We suggest that
these variations may have a common origin in reflection from a warped accretion
disk. Once the systematic variation of the peak burst fluxes is subtracted, the
residual scatter is only approximately 3%, roughly consistent with the
measurement uncertainties. The narrowness of this distribution strongly
suggests that i) the radiation from the neutron star atmosphere during
radius-expansion episodes is nearly spherically symmetric, and ii) the
radius-expansion bursts reach a common peak flux which may be interpreted as a
standard candle intensity.Adopting the minimum peak flux for the
radius-expansion bursts as the Eddington flux limit, we derive a distance for
the source of 4.4-4.8 kpc.Comment: 9 pages, 7 figures, accepted by ApJ. Minor referee's revisions, also
includes 9 newly public X-ray burst
Electromagnetic Calorimeter for HADES
We propose to build the Electromagnetic calorimeter for the HADES di-lepton
spectrometer. It will enable to measure the data on neutral meson production
from nucleus-nucleus collisions, which are essential for interpretation of
dilepton data, but are unknown in the energy range of planned experiments (2-10
GeV per nucleon). The calorimeter will improve the electron-hadron separation,
and will be used for detection of photons from strange resonances in elementary
and HI reactions.
Detailed description of the detector layout, the support structure, the
electronic readout and its performance studied via Monte Carlo simulations and
series of dedicated test experiments is presented.
The device will cover the total area of about 8 m^2 at polar angles between
12 and 45 degrees with almost full azimuthal coverage. The photon and electron
energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV])
which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in
Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron
rejection, resulting from simulations based on the test measurements, is better
than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.Comment: 40 pages, 38 figures version2 - the time schedule added, information
about PMTs in Sec.III update
Average distances on self-similar sets and higher order average distances of self-similar measures
The purpose of this paper is twofold: (1) we study different notions of the average distance between two points of a self-similar subset of ℝ, and (2) we investigate the asymptotic behaviour of higher order average moments of self-similar measures on self-similar subsets of ℝ
Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch
The bacterial flagellar switch that controls the direction of flagellar rotation during chemotaxis has a highly cooperative response. This has previously been understood in terms of the classic two-state, concerted model of allosteric regulation. Here, we used high-resolution optical microscopy to observe switching of single motors and uncover the stochastic multistate nature of the switch. Our observations are in detailed quantitative agreement with a recent general model of allosteric cooperativity that exhibits conformational spread—the stochastic growth and shrinkage of domains of adjacent subunits sharing a particular conformational state. We expect that conformational spread will be important in explaining cooperativity in other large signaling complexes
Dynamical suppression of decoherence in two-state quantum systems
The dynamics of a decohering two-level system driven by a suitable control
Hamiltonian is studied. The control procedure is implemented as a sequence of
radiofrequency pulses that repetitively flip the state of the system, a
technique that can be termed quantum "bang-bang" control after its classical
analog. Decoherence introduced by the system's interaction with a quantum
environment is shown to be washed out completely in the limit of continuous
flipping and greatly suppressed provided the interval between the pulses is
made comparable to the correlation time of the environment. The model suggests
a strategy to fight against decoherence that complements existing quantum
error-correction techniques.Comment: 15 pages, RevTeX style, 3 figures. Submitted to Phys. Rev.
Global properties of Stochastic Loewner evolution driven by Levy processes
Standard Schramm-Loewner evolution (SLE) is driven by a continuous Brownian
motion which then produces a trace, a continuous fractal curve connecting the
singular points of the motion. If jumps are added to the driving function, the
trace branches. In a recent publication [1] we introduced a generalized SLE
driven by a superposition of a Brownian motion and a fractal set of jumps
(technically a stable L\'evy process). We then discussed the small-scale
properties of the resulting L\'evy-SLE growth process. Here we discuss the same
model, but focus on the global scaling behavior which ensues as time goes to
infinity. This limiting behavior is independent of the Brownian forcing and
depends upon only a single parameter, , which defines the shape of the
stable L\'evy distribution. We learn about this behavior by studying a
Fokker-Planck equation which gives the probability distribution for endpoints
of the trace as a function of time. As in the short-time case previously
studied, we observe that the properties of this growth process change
qualitatively and singularly at . We show both analytically and
numerically that the growth continues indefinitely in the vertical direction
for , goes as for , and saturates for . The probability density has two different scales corresponding to
directions along and perpendicular to the boundary. In the former case, the
characteristic scale is . In the latter case the scale
is for , and
for . Scaling functions for the probability density are given for
various limiting cases.Comment: Published versio
Recommended from our members
Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations
We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller–Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated
- …