633 research outputs found

    Lazy algorithms for exact real arithmetic

    Get PDF
    In this article we propose a new representation for the real numbers. This representation can be conveniently used to implement exact real number computation with a lazy programming languages. In fact the new representation permits the exploitation of hardware implementation of arithmetic functions without generating the granularity problem. Moreover we present a variation of the Karatsuba algorithm for multiplication of integers. The new algorithm performs exact real number multiplication in a lazy way and has a lower complexity than the standard algorithm. \ua9 2004 Elsevier B.V. All rights reserved

    Learning Mazes with Aliasing States: An LCS Algorithm with Associative Perception

    Get PDF
    Learning classifier systems (LCSs) belong to a class of algorithms based on the principle of self-organization and have frequently been applied to the task of solving mazes, an important type of reinforcement learning (RL) problem. Maze problems represent a simplified virtual model of real environments that can be used for developing core algorithms of many real-world applications related to the problem of navigation. However, the best achievements of LCSs in maze problems are still mostly bounded to non-aliasing environments, while LCS complexity seems to obstruct a proper analysis of the reasons of failure. We construct a new LCS agent that has a simpler and more transparent performance mechanism, but that can still solve mazes better than existing algorithms. We use the structure of a predictive LCS model, strip out the evolutionary mechanism, simplify the reinforcement learning procedure and equip the agent with the ability of associative perception, adopted from psychology. To improve our understanding of the nature and structure of maze environments, we analyze mazes used in research for the last two decades, introduce a set of maze complexity characteristics, and develop a set of new maze environments. We then run our new LCS with associative perception through the old and new aliasing mazes, which represent partially observable Markov decision problems (POMDP) and demonstrate that it performs at least as well as, and in some cases better than, other published systems

    Long maximal incremental tests accurately assess aerobic fitness in class II and III obese men.

    Get PDF
    This study aimed to compare two different maximal incremental tests with different time durations [a maximal incremental ramp test with a short time duration (8-12 min) (STest) and a maximal incremental test with a longer time duration (20-25 min) (LTest)] to investigate whether an LTest accurately assesses aerobic fitness in class II and III obese men. Twenty obese men (BMI≥35 kg.m-2) without secondary pathologies (mean±SE; 36.7±1.9 yr; 41.8±0.7 kg*m-2) completed an STest (warm-up: 40 W; increment: 20 W*min-1) and an LTest [warm-up: 20% of the peak power output (PPO) reached during the STest; increment: 10% PPO every 5 min until 70% PPO was reached or until the respiratory exchange ratio reached 1.0, followed by 15 W.min-1 until exhaustion] on a cycle-ergometer to assess the peak oxygen uptake [Formula: see text] and peak heart rate (HRpeak) of each test. There were no significant differences in [Formula: see text] (STest: 3.1±0.1 L*min-1; LTest: 3.0±0.1 L*min-1) and HRpeak (STest: 174±4 bpm; LTest: 173±4 bpm) between the two tests. Bland-Altman plot analyses showed good agreement and Pearson product-moment and intra-class correlation coefficients showed a strong correlation between [Formula: see text] (r=0.81 for both; p≤0.001) and HRpeak (r=0.95 for both; p≤0.001) during both tests. [Formula: see text] and HRpeak assessments were not compromised by test duration in class II and III obese men. Therefore, we suggest that the LTest is a feasible test that accurately assesses aerobic fitness and may allow for the exercise intensity prescription and individualization that will lead to improved therapeutic approaches in treating obesity and severe obesity

    Topiramate efficacy in an infant with partial seizures refractory to conventional antiepileptic drugs

    Get PDF
    Many studies showed that Topiramate (TPM) may be a useful drug in a wide spectrum of childhood epilepsies. We report a 3-month-old female with stormy onset of secondarily generalized partial seizures. She showed a high seizure frequency and a progressive worsening electroencephalogram (EEG), despite standard antiepileptic drugs administration. TPM succeeded in controlling seizures, even after the other drugs were discontinued. This case suggests that TPM may represent a good choice for the treatment of partial seizures refractory to conventional drugs in infants

    Role of the Receptor Tyrosine Kinase Axl and its Targeting in Cancer Cells

    Get PDF
    Aberrant expression and activation of receptor tyrosine kinases (RTK) is a frequent feature of tumor cells that may underlie tumor aggressiveness. Among RTK, Axl, a member of the Tyro3-Axl-Mer family, represents a potential therapeutic target in different tumor types given its over-expression which leads to activation of oncogenic signaling promoting cell proliferation and survival, as well as migration and invasion. Axl can promote aggressiveness of various cell types through PI3K/Akt and/or MAPK/ERK, and its expression can be transcriptionally regulated by multiple factors. Deregulated Axl expression and activation have been shown to be implicated in reduced sensitivity of tumor cells to target-specific and conventional antitumor agents, but the precise mechanism underlying these phenomena are still poorly understood. Several small molecules acting as Axl inhibitors have been reported, and some of them are undergoing clinical investigation. In this review, we describe Axl biological functions, its expression in cancer and in drug-resistant tumor cells and the development of inhibitors tailored to this receptor tyrosine kinase

    A Paper-Based Test for Screening Newborns for Sickle Cell Disease

    Get PDF
    The high cost, complexity and reliance on electricity, specialized equipment and supplies associated with conventional diagnostic methods limit the scope and sustainability of newborn screening for sickle cell disease (SCD) in sub-Saharan Africa and other resource-limited areas worldwide. Here we describe the development of a simple, low-cost, rapid, equipment- and electricity-free paper-based test capable of detecting sickle hemoglobin (HbS) in newborn blood samples with a limit of detection of 2% HbS. We validated this newborn paper-based test in a cohort of 159 newborns at an obstetric hospital in Cabinda, Angola. Newborn screening results using the paper-based test were compared to conventional isoelectric focusing (IEF). The test detected the presence of HbS with 81.8% sensitivity and 83.3% specificity, and identified SCD newborns with 100.0% sensitivity and 70.7% specificity. The use of the paper-based test in a two-stage newborn screening process could have excluded about 70% of all newborns from expensive confirmatory testing by IEF, without missing any of the SCD newborns in the studied cohort. This study demonstrates the potential utility of the newborn paper-based test for reducing the overall cost of screening newborns for SCD and thus increasing the practicality of universal newborn SCD screening programs in resource-limited settings

    Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel. A smart nanostructured pillow for near-infrared light-driven biomedical applications

    Get PDF
    Multifunctional nanomaterials with the ability to respond to near-infrared (NIR) light stimulation are vital for the development of highly efficient biomedical nanoplatforms with a polytherapeutic approach. Inspired by the mesoglea structure of jellyfish bells, a biomimetic multifunctional nanostructured pillow with fast photothermal responsiveness for NIR light-controlled on-demand drug delivery is developed. We fabricate a nanoplatform with several hierarchical levels designed to generate a series of controlled, rapid, and reversible cascade-like structural changes upon NIR light irradiation. The mechanical contraction of the nanostructured platform, resulting from the increase of temperature to 42 °C due to plasmonic hydrogel-light interaction, causes a rapid expulsion of water from the inner structure, passing through an electrospun membrane anchored onto the hydrogel core. The mutual effects of the rise in temperature and water flow stimulate the release of molecules from the nanofibers. To expand the potential applications of the biomimetic platform, the photothermal responsiveness to reach the typical temperature level for performing photothermal therapy (PTT) is designed. The on-demand drug model penetration into pig tissue demonstrates the efficiency of the nanostructured platform in the rapid and controlled release of molecules, while the high biocompatibility confirms the pillow potential for biomedical applications based on the NIR light-driven multitherapy strategy
    corecore