8 research outputs found

    A temperature dependent virus binding assay reveals the presence of neutralising antibodies in human cytomegalovirus gB vaccine recipients’ sera

    Get PDF
    Human cytomegalovirus (HCMV) remains an important cause of mortality in immune-compromised transplant patients and following congenital infection. Such is the burden, an effective vaccine strategy is considered to be of the highest priority. The most successful vaccines to date have focused on generating immune responses against glycoprotein B (gB) – a protein essential for HCMV fusion and entry. We have previously reported that an important component of the humoral immune response elicited by gB/MF59 vaccination of patients awaiting transplant is the induction of non-neutralizing antibodies that target cell-associated virus with little evidence of concomitant classical neutralizing antibodies. Here we report that a modified neutralization assay that promotes prolonged binding of HCMV to the cell surface reveals the presence of neutralizing antibodies in sera taken from gB-vaccinated patients that cannot be detected using standard assays. We go on to show that this is not a general feature of gB-neutralizing antibodies, suggesting that specific antibody responses induced by vaccination could be important. Although we can find no evidence that these neutralizing antibody responses are a correlate of protection in vivo in transplant recipients their identification demonstrates the utility of the approach in identifying these responses. We hypothesize that further characterization has the potential to aid the identification of functions within gB that are important during the entry process and could potentially improve future vaccine strategies directed against gB if they prove to be effective against HCMV at higher concentrations

    Seronegative patients vaccinated with cytomegalovirus gB-MF59 vaccine have evidence of neutralising antibody responses against gB early post-transplantation

    Get PDF
    Background Human cytomegalovirus (HCMV) causes a ubiquitous infection which can pose a significant threat for immunocompromised individuals, such as those undergoing solid organ transplant (SOT). Arguably, the most successful vaccine studied to date is the recombinant glycoprotein-B (gB) with MF59 adjuvant which, in 3 Phase II trials, demonstrated 43–50% efficacy in preventing HCMV acquisition in seronegative healthy women or adolescents and reduction in virological parameters after SOT. However, the mechanism of vaccine protection in seronegative recipients remains undefined. Methods We evaluated samples from the cohort of seronegative SOT patients enroled in the Phase II glycoprotein-B/MF59 vaccine trial who received organs from seropositive donors. Samples after SOT (0–90 days) were tested by real-time quantitative PCR for HCMV DNA. Anti-gB antibody levels were measured by ELISA. Neutralization was measured as a decrease in infectivity for fibroblast cell cultures revealed by expression of immediate-early antigens. Findings Serological analyses revealed a more rapid increase in the humoral response against gB post transplant in vaccine recipients than in those randomised to receive placebo. Importantly, a number of patient sera displayed HCMV neutralising responses – neutralisation which was abrogated by pre-absorbing the sera with recombinant gB. Interpretation We hypothesise that the vaccine primed the immune system of seronegative recipients which, when further challenged with virus at time of transplant, allowed the host to mount rapid immunological humoral responses even under conditions of T cell immune suppression during transplantation

    Seronegative patients vaccinated with cytomegalovirus gB-MF59 vaccine have evidence of neutralising antibody responses against gB early post-transplantation

    Get PDF
    Background Human cytomegalovirus (HCMV) causes a ubiquitous infection which can pose a significant threat for immunocompromised individuals, such as those undergoing solid organ transplant (SOT). Arguably, the most successful vaccine studied to date is the recombinant glycoprotein-B (gB) with MF59 adjuvant which, in 3 Phase II trials, demonstrated 43–50% efficacy in preventing HCMV acquisition in seronegative healthy women or adolescents and reduction in virological parameters after SOT. However, the mechanism of vaccine protection in seronegative recipients remains undefined. Methods We evaluated samples from the cohort of seronegative SOT patients enroled in the Phase II glycoprotein-B/MF59 vaccine trial who received organs from seropositive donors. Samples after SOT (0–90 days) were tested by real-time quantitative PCR for HCMV DNA. Anti-gB antibody levels were measured by ELISA. Neutralization was measured as a decrease in infectivity for fibroblast cell cultures revealed by expression of immediate-early antigens. Findings Serological analyses revealed a more rapid increase in the humoral response against gB post transplant in vaccine recipients than in those randomised to receive placebo. Importantly, a number of patient sera displayed HCMV neutralising responses – neutralisation which was abrogated by pre-absorbing the sera with recombinant gB. Interpretation We hypothesise that the vaccine primed the immune system of seronegative recipients which, when further challenged with virus at time of transplant, allowed the host to mount rapid immunological humoral responses even under conditions of T cell immune suppression during transplantation

    Dynamics of trace metals in a shallow coastal ecosystem: insights from the Gulf of Gabès (southern Mediterranean Sea)

    No full text

    Forest fences: enclosures in a pre-enclosure landscape

    No full text

    A compendium of sources of fracture toughness and fatigue-crack growth data for metallic alloys

    No full text

    Ăśbersicht ĂĽber die physiologische Forschung betreffend die motorische Funktion des Uterus im nichtgraviden Organismus

    No full text
    corecore