77 research outputs found

    Effects of urodilatin on natriuresis in cirrhosis patients with sodium retention

    Get PDF
    BACKGROUND: Sodium retention and ascites are serious clinical problems in cirrhosis. Urodilatin (URO) is a peptide with paracrine effects in decreasing sodium reabsorption in the distal nephron. Our aim was to investigate the renal potency of synthetic URO on urine sodium excretion in cirrhosis patients with sodium retention and ascites. METHODS: Seven cirrhosis patients with diuretics-resistant sodium retention received a short-term (90 min) infusion of URO in a single-blind, placebo-controlled cross-over study. In the basal state after rehydration the patients had urine sodium excretion < 50 mmol/24 h. RESULTS: URO transiently increased urine sodium excretion from 22 ± 16 μmol/min (mean ± SD) to 78 ± 41 μmol/min (P < 0.05) and there was no effect of placebo (29 ± 14 to 44 ± 32). The increase of URO's second messenger after the receptor, cGMP, was normal. URO had no effect on urine flow or on blood pressure. Most of the patients had highly elevated plasma levels of renin, angiotensin II and aldosterone and URO did not change these. CONCLUSION: The short-term low-dose URO infusion increased the sodium excretion of the patients. The increase was small but systematic and potentially clinically important for such patients. The small response contrasts the preserved responsiveness of the URO receptors. The markedly activated systemic pressor hormones in cirrhosis evidently antagonized the local tubular effects of URO

    Beneficial effect of Sparassis crispa on stroke through activation of Akt/eNOS pathway in brain of SHRSP

    Get PDF
    Sparassis crispa (S. crispa) is a mushroom used as a natural medicine that recently became cultivatable in Japan. In this study, we investigated not only the preventive effects of S. crispa against stroke and hypertension in stroke-prone spontaneously hypertensive rats (SHRSP) but also the mechanism involved by using studies of the cerebral cortex at a young age. Six-week-old male SHRSP were divided into 2 groups, a control group and an S. crispa group administered 1.5% S. crispa in feed, and we then observed their survival. In addition, rats of the same age were treated with 1.5% S. crispa for 4 weeks and we measured body weight, blood pressure, blood flow from the tail, NOx production, and the levels of expression of several proteins in the cerebral cortex by western blot analysis. Our results showed that the S. crispa group had a delayed incidence of stroke and death and significantly decreased blood pressure and increased blood flow after the administration. Moreover, the quantity of urinary excretion and the nitrate/nitrite concentration in cerebral tissue were higher than those of control SHRSP rats. In the cerebral cortex, phosphor-eNOS (Ser1177) and phosphor-Akt (Ser473) in S. crispa-treated SHRSP were increased compared with those of control SHRSP rats. In conclusion, S. crispa could ameliorate cerebrovascular endothelial dysfunction by promoting recovery of Akt-dependent eNOS phosphorylation and increasing NO production in the cerebral cortex. S. crispa may be useful for preventing stroke and hypertension

    Damaged Intestinal Epithelial Integrity Linked to Microbial Translocation in Pathogenic Simian Immunodeficiency Virus Infections

    Get PDF
    The chronic phase of HIV infection is marked by pathological activation of the immune system, the extent of which better predicts disease progression than either plasma viral load or CD4+ T cell count. Recently, translocation of microbial products from the gastrointestinal tract has been proposed as an underlying cause of this immune activation, based on indirect evidence including the detection of microbial products and specific immune responses in the plasma of chronically HIV-infected humans or SIV-infected Asian macaques. We analyzed tissues from SIV-infected rhesus macaques (RMs) to provide direct in situ evidence for translocation of microbial constituents from the lumen of the intestine into the lamina propria and to draining and peripheral lymph nodes and liver, accompanied by local immune responses in affected tissues. In chronically SIV-infected RMs this translocation is associated with breakdown of the integrity of the epithelial barrier of the gastrointestinal (GI) tract and apparent inability of lamina propria macrophages to effectively phagocytose translocated microbial constituents. By contrast, in the chronic phase of SIV infection in sooty mangabeys, we found no evidence of epithelial barrier breakdown, no increased microbial translocation and no pathological immune activation. Because immune activation is characteristic of the chronic phase of progressive HIV/SIV infections, these findings suggest that increased microbial translocation from the GI tract, in excess of capacity to clear the translocated microbial constituents, helps drive pathological immune activation. Novel therapeutic approaches to inhibit microbial translocation and/or attenuate chronic immune activation in HIV-infected individuals may complement treatments aimed at direct suppression of viral replication
    • …
    corecore