147 research outputs found

    Nucleic acid delivery by cell-penetrating peptides

    Get PDF
    Establishment of multiple novel mechanisms and applications of cell-penetrating peptides (CPP) has been demonstrated, leading to novel drug delivery systems. Here, I present a brief introduction to the CPP area together with the selected recent achievements in the delivery of nucleic acids

    Mechanisms of Cellular Uptake of Cell-Penetrating Peptides

    Get PDF
    Recently, much attention has been given to the problem of drug delivery through the cell-membrane in order to treat and manage several diseases. The discovery of cell penetrating peptides (CPPs) represents a major breakthrough for the transport of large-cargo molecules that may be useful in clinical applications. CPPs are rich in basic amino acids such as arginine and lysine and are able to translocate over membranes and gain access to the cell interior. They can deliver large-cargo molecules, such as oligonucleotides, into cells. Endocytosis and direct penetration have been suggested as the two major uptake mechanisms, a subject still under debate. Unresolved questions include the detailed molecular uptake mechanism(s), reasons for cell toxicity, and the delivery efficiency of CPPs for different cargoes. Here, we give a review focused on uptake mechanisms used by CPPs for membrane translocation and certain experimental factors that affect the mechanism(s)

    Cell-penetrating peptides in protein mimicry and cancer therapeutics

    Get PDF
    © 2021 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.addr.2021.114044Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.This research was funded by the Swedish Research Council, Estonian Ministry of Education and Research (IUT20-26) and by the EU (2014–2020.4.01.15–0013).Published versio

    Internalisation of cell-penetrating peptides into tobacco protoplasts

    Get PDF
    AbstractCells are protected from the surrounding environment by plasma membrane which is impenetrable for most hydrophilic molecules. In the last 10 years cell-penetrating peptides (CPPs) have been discovered and developed. CPPs enter mammalian cells and carry cargo molecules over the plasma membrane with a molecular weight several times their own. Known transformation methods for plant cells have relatively low efficiency and require improvement. The possibility to use CPPs as potential delivery vectors for internalisation in plant cells has been studied in the present work. We analyse and compare the uptake of the fluorescein-labeled CPPs, transportan, TP10, penetratin and pVEC in Bowes human melanoma cells and Nicotiana tabacum cultivar (cv.) SR-1 protoplasts (plant cells without cell wall). We study the internalisation efficiency of CPPs with fluorescence microscopy, spectrofluorometry and fluorescence-activated cell sorter (FACS). All methods indicate, for the first time, that these CPPs can internalise into N. tabacum cv. SR-1 protoplasts. Transportan has the highest uptake efficacy among the studied peptides, both in mammalian cells and plant protoplast. The internalisation of CPPs by plant protoplasts may open up a new effective method for transfection in plants

    Retro-inversion of certain cell-penetrating peptides causes severe cellular toxicity

    Get PDF
    AbstractCell-penetrating peptides (CPPs) are a promising group of delivery vectors for various therapeutic agents but their application is often hampered by poor stability in the presence of serum. Different strategies to improve peptide stability have been exploited, one of them being “retro-inversion” (RI) of natural peptides. With this approach the stability of CPPs has been increased, thereby making them more efficient transporters. Several RI-CPPs were here assessed and compared to the corresponding parent peptides in different cell-lines. Surprisingly, treatment of cells with these peptides induced trypsin insensitivity and rapid severe toxicity in contrast to l-peptides. This was measured as reduced metabolic activity and condensed cell nuclei, in parity with the apoptosis inducing agent staurosporine. Furthermore, effects on mitochondrial network, focal adhesions, actin cytoskeleton and caspase-3 activation were analyzed and adverse effects were evident at 20μM peptide concentration within 4h while parent l-peptides had negligible effects. To our knowledge this is the first time RI peptides are reported to cause cellular toxicity, displayed by decreased metabolic activity, morphological changes and induction of apoptosis. Considering the wide range of research areas that involves the use of RI-peptides, this finding is of major importance and needs to be taken under consideration in applications of RI-peptides

    Relevance of the N-terminal NLS-like sequence of the prion protein for membrane perturbation effects

    Get PDF
    AbstractWe investigated the nuclear localization-like sequence KKRPKP, corresponding to the residues 23–28 in the mouse prion protein (mPrP), for its membrane perturbation activity, by comparing effects of two mPrP-derived peptides, corresponding to residues 1–28 (mPrPp(1–28)) and 23–50 (mPrPp(23–50)), respectively. In erythrocytes, mPrPp(1–28) induced ∼60% haemoglobin leakage after 30 min, whereas mPrPp(23–50) had negligible effects. In calcein-entrapping, large unilamellar vesicles (LUVs), similar results were obtained. Cytotoxicity estimated by lactate dehydrogenase leakage from HeLa cells, was found to be ∼12% for 50 μM mPrPp(1–28), and ∼1% for 50 μM mPrPp(23–50). Circular dichroism spectra showed structure induction of mPrPp(1–28) in the presence of POPC:POPG (4:1) and POPC LUVs, while mPrPp(23–50) remained a random coil. Membrane translocation studies on live HeLa cells showed mPrPp(1–28) co-localizing with dextran, suggesting fluid-phase endocytosis, whereas mPrPp(23–50) hardly translocated at all. We conclude that the KKRPKP-sequence is not sufficient to cause membrane perturbation or translocation but needs a hydrophobic counterpart

    Free uptake of cell-penetrating peptides by fission yeast

    Get PDF
    AbstractAn increasing number of peptides translocate the plasma membrane of mammalian cells promising new avenues for drug delivery. However, only a few examples are known to penetrate the fungal cell wall. We compared the capacity of different fluorophore-labelled peptides to translocate into fission yeast and human cells and determined their intracellular distribution. Most of the 20 peptides tested were able to enter human cells, but only one, transportan 10 (TP10), efficiently penetrated fission yeast and was distributed uniformly inside the cells. The results show that the fungal cell wall may reduce, but does not block peptide uptake

    Retro-inversion of certain cell-penetrating peptides causes severe cellular toxicity

    Get PDF
    AbstractCell-penetrating peptides (CPPs) are a promising group of delivery vectors for various therapeutic agents but their application is often hampered by poor stability in the presence of serum. Different strategies to improve peptide stability have been exploited, one of them being “retro-inversion” (RI) of natural peptides. With this approach the stability of CPPs has been increased, thereby making them more efficient transporters. Several RI-CPPs were here assessed and compared to the corresponding parent peptides in different cell-lines. Surprisingly, treatment of cells with these peptides induced trypsin insensitivity and rapid severe toxicity in contrast to l-peptides. This was measured as reduced metabolic activity and condensed cell nuclei, in parity with the apoptosis inducing agent staurosporine. Furthermore, effects on mitochondrial network, focal adhesions, actin cytoskeleton and caspase-3 activation were analyzed and adverse effects were evident at 20μM peptide concentration within 4h while parent l-peptides had negligible effects. To our knowledge this is the first time RI peptides are reported to cause cellular toxicity, displayed by decreased metabolic activity, morphological changes and induction of apoptosis. Considering the wide range of research areas that involves the use of RI-peptides, this finding is of major importance and needs to be taken under consideration in applications of RI-peptides

    Modulating Anti-MicroRNA-21 Activity and Specificity Using Oligonucleotide Derivatives and Length Optimization

    Get PDF
    MicroRNAs are short, endogenous RNAs that direct posttranscriptional regulation of gene expression vital for many developmental and cellular functions. Implicated in the pathogenesis of several human diseases, this group of RNAs provides interesting targets for therapeutic intervention. Anti-microRNA oligonucleotides constitute a class of synthetic antisense oligonucleotides used to interfere with microRNAs. In this study, we investigate the effects of chemical modifications and truncations on activity and specificity of anti-microRNA oligonucleotides targeting microRNA-21. We observed an increased activity but reduced specificity when incorporating locked nucleic acid monomers, whereas the opposite was observed when introducing unlocked nucleic acid monomers. Our data suggest that phosphorothioate anti-microRNA oligonucleotides yield a greater activity than their phosphodiester counterparts and that a moderate truncation of the anti-microRNA oligonucleotide improves specificity without significantly losing activity. These results provide useful insights for design of anti-microRNA oligonucleotides to achieve both high activity as well as efficient mismatch discrimination

    Влияние параметров торцовой фрезы на характер обработанной поверхности

    Get PDF
    Материалы ХI Международной науч.-техн. конф. студентов, магистрантов и аспирантов [28-29 апреля 2011 г., г. Гомель]. - Гомель, 2011
    corecore