281 research outputs found
Creating a Culture of Voting in Direct and Generalist Practice: Training Field Instructors
Social workers have an ethical responsibility to be engaged in policy change, regardless of their practice area or specialization. Voter engagement and the importance of political power through voting is often overlooked in the literature as a valid and important component of social work practice. Creating a culture of nonpartisan voter engagement in practice settings can help empower individuals who have been historically and intentionally disenfranchised from our electoral system. Training for field instructors, faculty, and field staff is a key aspect of voter engagement in social work education. Unfortunately, social work education is unlikely to include substantive content on voter engagement or its connection to social work practice and impact. This article presents one component of a model for integrating voter engagement into social work education: the provision of training for field instructors on nonpartisan voter engagement at two universities over two years. Evaluation findings suggest that pre-existing levels of political efficacy affect the reaction of field instructors to nonpartisan voter engagement training. Furthermore, findings indicate that field instructors who receive voter engagement training are more likely to serve as resources for their students and to consider voter engagement as part of their own practice. We offer evidence on the important role field educators can play in the success of the larger national effort to integrate voter engagement in social work education. Increasing awareness of what social workers, nonprofit, and public agencies are allowed--or even required--to do is a critical first step
Differential roles of CCL2 and CCR2 in host defense to coronavirus infection.
The CC chemokine ligand 2 (CCL2, monocyte chemoattractant protein-1) is important in coordinating the immune response following microbial infection by regulating T cell polarization as well as leukocyte migration and accumulation within infected tissues. The present study examines the consequences of mouse hepatitis virus (MHV) infection in mice lacking CCL2 (CCL2(-/-)) in order to determine if signaling by this chemokine is relevant in host defense. Intracerebral infection of CCL2(-/-) mice with MHV did not result in increased morbidity or mortality as compared to either wild type or CCR2(-/-) mice and CCL2(-/-) mice cleared replicating virus from the brain. In contrast, CCR2(-/-) mice displayed an impaired ability to clear virus from the brain that was accompanied by a reduction in the numbers of antigen-specific T cells as compared to both CCL2(-/-) and wild-type mice. The paucity in T cell accumulation within the central nervous system (CNS) of MHV-infected CCR2(-/-) mice was not the result of either a deficiency in antigen-presenting cell (APC) accumulation within draining cervical lymph nodes (CLN) or the generation of virus-specific T cells within this compartment. A similar reduction in macrophage infiltration into the CNS was observed in both CCL2(-/-) and CCR2(-/-) mice when compared to wild-type mice, indicating that both CCL2 and CC chemokine receptor 2 (CCR2) contribute to macrophage migration and accumulation within the CNS following MHV infection. Together, these data demonstrate that CCR2, but not CCL2, is important in host defense following viral infection of the CNS, and CCR2 ligand(s), other than CCL2, participates in generating a protective response
Recommended from our members
Dietary Intake, D3Cr Muscle Mass, and Appendicular Lean Mass in a Cohort of Older Men.
BackgroundWe examined cross-sectional associations between dietary patterns, macronutrient intake, and measures of muscle mass and lean mass in older men.MethodsParticipants in the Osteoporotic Fractures in Men (MrOS) cohort (n = 903; mean ± SD age 84.2 ± 4 years) completed brief Block food frequency questionnaires (May 2014-May 2016); factor analysis was used to derive dietary patterns. The D3-creatine (D3Cr) dilution method was used to measure muscle mass; dual-energy x-ray absorptiometry (DXA) was used to measure appendicular lean mass (ALM). Generalized linear models were used to report adjusted means of outcomes by dietary pattern. Multiple linear regression models were used to determine associations between macronutrients and D3Cr muscle mass and DXA ALM. Multivariable models were adjusted for age, race, clinic site, education, depression, total energy intake, height, and percent body fat.ResultsGreater adherence to a Western dietary pattern (high factor loadings for red meat, fried foods, and high-fat dairy) was associated with higher D3Cr muscle mass (p-trend = .026). Adherence to the Healthy dietary pattern (high factor loadings for fruit, vegetables, whole grains, and lean meats) was not associated with D3Cr muscle mass or DXA ALM. Total protein (β = 0.09, 95% CI = 0.03, 0.14) and nondairy animal protein (β = 0.16, 95% CI = 0.10, 0.21) were positively associated with D3Cr muscle mass. Nondairy animal protein (β = 0.06, 95% CI = 0.002, 0.11) was positively associated with DXA ALM. Associations with other macronutrients were inconsistent.ConclusionsNondairy animal protein intake (within a Western dietary pattern and alone) was positively associated with D3Cr muscle mass in older men
Bacterial Diversity in the Hyperalkaline Allas Springs (Cyprus), a Natural Analogue for Cementitious Radioactive Waste Repository
The biogeochemical gradients that will develop across the interface between a highly alkaline cementitious geological disposal facility for intermediate level radioactive waste and the geosphere are poorly understood. In addition, there is a paucity of information about the microorganisms that may populate these environments and their role in biomineralization, gas consumption and generation, metal cycling, and on radionuclide speciation and solubility. In this study, we investigated the phylogenetic diversity of indigenous microbial communities and their potential for alkaline metal reduction in samples collected from a natural analogue for cementitious radioactive waste repositories, the hyperalkaline Allas Springs (pH up to 11.9), Troodos Mountains, Cyprus. The site is situated within an ophiolitic complex of ultrabasic rocks that are undergoing active low-temperature serpentinization, which results in hyperalkaline conditions. 16S rRNA cloning and sequencing showed that phylogenetically diverse microbial communities exist in this natural high pH environment, including Hydrogenophaga species. This indicates that alkali-tolerant hydrogen-oxidizing microorganisms could potentially colonize an alkaline geological repository, which is predicted to be rich in molecular H2, as a result of processes including steel corrosion and cellulose biodegradation within the wastes. Moreover, microbial metal reduction was confirmed at alkaline pH in this study by enrichment microcosms and by pure cultures of bacterial isolates affiliated to the Paenibacillus and Alkaliphilus genera. Overall, these data show that a diverse range of microbiological processes can occur in high pH environments, consistent with those expected during the geodisposal of intermediate level waste. Many of these, including gas metabolism and metal reduction, have clear implications for the long-term geological disposal of radioactive waste
Developmental delay in Rett syndrome: data from the natural history study
Background: Early development appears normal in Rett syndrome (OMIM #312750) and may be more apparent than real. A major purpose of the Rett Syndrome (RTT) Natural History Study (NHS) was to examine achievement of developmental skills or abilities in classic and atypical RTT and assess phenotype-genotype relations in classic RTT. Methods: Developmental skills in four realms, gross and fine motor, and receptive and expressive communication from initial enrollment and longitudinal assessments for up to 7 years, were assessed from 542 females meeting criteria for classic RTT and 96 females with atypical RTT divided into two groups: 50 with better and 46 with poorer functional scores. Data were analyzed for age at acquisition and loss of developmental features and for phenotype-genotype effects. Acquired, lost, and retained skills were compared between classic RTT and atypical RTT with better or poorer functional scores using Fisher's Exact test. To examine if the mean total score from the Motor Behavioral Assessment during follow-up differed for acquiring a skill, we used a generalized estimating equation assuming compound symmetry correlation structure within a subject. A general linear model was used to examine whether the mean age of acquisition or loss of a developmental skill differed by mutation type. P values <0.05 were considered significant and were two-sided without adjustment for multiple testing. Statistical analyses utilized SAS 9.3 (SAS Institute, Cary, NC, USA). Results: Early developmental skills or abilities were often acquired albeit later than normal. More complex motor and communication acquisitions were delayed or absent. Clinical severity was less in those achieving the respective skill. Individuals with R133C, R294X, and R306C point mutations and 3′ truncations tended to have better developmental outcomes. Conclusions: Early developmental skills were acquired by many, but clear differences from normal emerged, particularly in skills expected after age 6 months. When comparing clinical severity, greater acquisition of specific skills was associated with specific mutations, confirming the impression that these mutations confer milder developmental abnormalities. These data may serve for planning and interpretation of early intervention studies in RTT. Trial registration This NHS study, clinicaltrials.gov (NCT00296764), represents the largest group of RTT participants assessed repeatedly by direct examination
Bostonia: The Boston University Alumni Magazine. Volume 10
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Serine/threonine acetylation of TGFbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling
The Gram-negative bacteria Yersinia pestis, causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host. One of these Yop proteins, YopJ, is proapoptotic and inhibits mammalian NF-kappaB and MAP-kinase signal transduction pathways. Although the molecular mechanism remained elusive for some time, recent work has shown that YopJ acts as a serine/threonine acetyl-transferase targeting MAP2 kinases. Using Drosophila as a model system, we find that YopJ inhibits one innate immune NF-kappaB signaling pathway (IMD) but not the other (Toll). In fact, we show YopJ mediated serine/threonine acetylation and inhibition of dTAK1, the critical MAP3 kinase in the IMD pathway. Acetylation of critical serine/threonine residues in the activation loop of Drosophila TAK1 blocks phosphorylation of the protein and subsequent kinase activation. In addition, studies in mammalian cells show similar modification and inhibition of hTAK1. These data present evidence that TAK1 is a target for YopJ-mediated inhibition
Recommended from our members
Clades of huge phages from across Earth's ecosystems.
Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems
Community-based arts research for people with learning disabilities: challenging misconceptions about learning disabilities
This article presents some of the community-based artwork of a group of men with learning disabilities, who aimed to challenge some of the misconceptions associated with learning disabilities. People with learning disabilities regularly face many forms of direct and indirect stigma. The consequences of such negative perceptions may affect individuals’ social relationships and ensure that barriers are strengthened which prevent their full inclusion. The men in this project used a series of visual and creative methods to challenge some of these misconceptions by telling stories through art, demonstrating skill through photography, using poetry to talk about sexual identity and improvising drama and filmmaking to challenge stigma, and through sculpture expressed their voices. Thus, by doing so, they were able to challenge some of the stigma associated with learning disabilities, indicating that community-based arts research is a valuable way in which to promote the voices of people with learning disabilities
- …