976 research outputs found
What do young athletes implicitly understand about psychological skills?
One reason sport psychologists teach psychological skills is to enhance performance in sport; but the value of psychological skills for young athletes is questionable because of the qualitative and quantitative differences between children and adults in their understanding of abstract concepts such as mental skills. To teach these skills effectively to young athletes, sport psychologists need to appreciate what young athletes implicitly understand about such skills because maturational (e.g., cognitive, social) and environmental (e.g., coaches) factors can influence the progressive development of children and youth. In the present qualitative study, we explored young athletes’ (aged 10–15 years) understanding of four basic psychological skills: goal setting, mental imagery, self-talk, and relaxation. Young athletes (n = 118: 75 males and 43 females) completed an open-ended questionnaire to report their understanding of these four basic psychological skills. Compared with the older youth athletes, the younger youth athletes were less able to explain the meaning of each psychological skill. Goal setting and mental imagery were better understood than self-talk and relaxation. Based on these findings, sport psychologists should consider adapting interventions and psychoeducational programs to match young athletes’ age and developmental level
Phenomenology of the Little Higgs Model
We study the low energy phenomenology of the little Higgs model. We first
discuss the linearized effective theory of the "littlest Higgs model" and study
the low energy constraints on the model parameters. We identify sources of the
corrections to low energy observables, discuss model-dependent arbitrariness,
and outline some possible directions of extensions of the model in order to
evade the precision electroweak constraints. We then explore the characteristic
signatures to test the model in the current and future collider experiments. We
find that the LHC has great potential to discover the new SU(2) gauge bosons
and the possible new U(1) gauge boson to the multi-TeV mass scale. Other states
such as the colored vector-like quark T and doubly-charged Higgs boson Phi^{++}
may also provide interesting signals. At a linear collider, precision
measurements on the triple gauge boson couplings could be sensitive to the new
physics scale of a few TeV. We provide a comprehensive list of the linearized
interactions and vertices for the littlest Higgs model in the appendices.Comment: 43 pages, 6 figures; v2: discussion clarified, typos corrected; v3:
version to appear in PRD; v4: typos fixed in Feynman rule
Molecular sieve vacuum swing adsorption purification and radon reduction system for gaseous dark matter and rare-event detectors
In the field of directional dark matter experiments SF6 has emerged as an ideal target gas. A critical challenge with this gas, and with other proposed gases, is the effective removal of contaminant gases. This includes radon which produce unwanted background events, but also common pollutants such as water, oxygen and nitrogen, which can capture ionisation electrons, resulting in loss of detector gas gain over time. We present here a novel molecular sieve (MS) based gas recycling system for the simultaneous removal of both radon and common pollutants from SF6. The apparatus has the additional benefit of minimising gas required in experiments and utilises a Vacuum Swing Adsorption (VSA) technique for continuous, long-term operation. The gas system's capabilities were tested with a 100 L low-pressure SF6 Time Projection Chamber (TPC) detector. For the first time, we present a newly developed low-radioactive MS type 5 Å. This material was found to emanate radon at 98% less per radon captured compared to commercial counterparts, the lowest known MS emanation at the time of writing. Consequently, the radon activity in the TPC detector was reduced, with an upper limit of less than 7.2 mBq at a 95% confidence level (C.L.). Incorporation of MS types 3 Å and 4 Å to absorb common pollutants was found successfully to mitigate against gain deterioration while recycling the target gas
Lepton flavor violation decays in the topcolor-assisted technicolor model and the littlest Higgs model with parity
The new particles predicted by the topcolor-assisted technicolor ()
model and the littlest Higgs model with T-parity (called model) can
induce the lepton flavor violation () couplings at tree level or one loop
level, which might generate large contributions to some processes. Taking
into account the constraints of the experimental data on the relevant free
parameters, we calculate the branching ratios of the decay processes
with = , and
in the context of these two kinds of new physics models. We find
that the model and the model can indeed produce significant
contributions to some of these decay processes.Comment: 24 pages, 7 figure
Length of carotid stenosis predicts peri-procedural stroke or death and restenosis in patients randomized to endovascular treatment or endarterectomy.
BACKGROUND: The anatomy of carotid stenosis may influence the outcome of endovascular treatment or carotid endarterectomy. Whether anatomy favors one treatment over the other in terms of safety or efficacy has not been investigated in randomized trials.
METHODS: In 414 patients with mostly symptomatic carotid stenosis randomized to endovascular treatment (angioplasty or stenting; n = 213) or carotid endarterectomy (n = 211) in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS), the degree and length of stenosis and plaque surface irregularity were assessed on baseline intraarterial angiography. Outcome measures were stroke or death occurring between randomization and 30 days after treatment, and ipsilateral stroke and restenosis ≥50% during follow-up. RESULTS: Carotid stenosis longer than 0.65 times the common carotid artery diameter was associated with increased risk of peri-procedural stroke or death after both endovascular treatment [odds ratio 2.79 (1.17-6.65), P = 0.02] and carotid endarterectomy [2.43 (1.03-5.73), P = 0.04], and with increased long-term risk of restenosis in endovascular treatment [hazard ratio 1.68 (1.12-2.53), P = 0.01]. The excess in restenosis after endovascular treatment compared with carotid endarterectomy was significantly greater in patients with long stenosis than with short stenosis at baseline (interaction P = 0.003). Results remained significant after multivariate adjustment. No associations were found for degree of stenosis and plaque surface.
CONCLUSIONS: Increasing stenosis length is an independent risk factor for peri-procedural stroke or death in endovascular treatment and carotid endarterectomy, without favoring one treatment over the other. However, the excess restenosis rate after endovascular treatment compared with carotid endarterectomy increases with longer stenosis at baseline. Stenosis length merits further investigation in carotid revascularisation trials
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP
Promptly decaying lightest neutralinos and long-lived staus are searched for
in the context of light gravitino scenarios. It is assumed that the stau is the
next to lightest supersymmetric particle (NLSP) and that the lightest
neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector
at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of
the production of these particles is found. Hence, lower mass limits for both
kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is
found to be greater than 71.5 GeV/c^2. In the search for long-lived stau,
masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10
to 150 \eVcc . Combining this search with the searches for stable heavy leptons
and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc
may be set for the stau mas
Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV
The DELPHI detector at LEP has collected 54 pb^{-1} of data at a
centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV
during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data
were used to measure the average charged particle multiplicity in e+e- -> b
bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the
multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183
GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85
(stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01
(syst). This result is consistent with QCD predictions, while it is
inconsistent with calculations assuming that the multiplicity accompanying the
decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure
- …