8,414 research outputs found

    On the ideals of equivariant tree models

    Full text link
    We introduce equivariant tree models in algebraic statistics, which unify and generalise existing tree models such as the general Markov model, the strand symmetric model, and group based models. We focus on the ideals of such models. We show how the ideals for general trees can be determined from the ideals for stars. The main novelty is our proof that this procedure yields the entire ideal, not just an ideal defining the model set-theoretically. A corollary of theoretical importance is that the ideal for a general tree is generated by the ideals of its flattenings at vertices.Comment: 23 pages. Greatly improved exposition, in part following suggestions by a referee--thanks! Also added exampl

    Treating some solid state problems with the Dirac equation

    Full text link
    The ambiguity involved in the definition of effective-mass Hamiltonians for nonrelativistic models is resolved using the Dirac equation. The multistep approximation is extended for relativistic cases allowing the treatment of arbitrary potential and effective-mass profiles without ordering problems. On the other hand, if the Schrodinger equation is supposed to be used, our relativistic approach demonstrate that both results are coincidents if the BenDaniel and Duke prescription for the kinetic-energy operator is implemented. Applications for semiconductor heterostructures are discussed.Comment: 06 pages, 5 figure

    Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas

    Full text link
    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose--Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L^3 the sum of the cycle probabilities of length k >> L^2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the \pi_k in the thermodynamic limit. We also determine the function \pi_k for arbitrary systems. Furthermore we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.Comment: 6 pages, extensive rewriting, new section on maximum-length cycle

    Quasi-Homogeneous Thermodynamics and Black Holes

    Get PDF
    We propose a generalized thermodynamics in which quasi-homogeneity of the thermodynamic potentials plays a fundamental role. This thermodynamic formalism arises from a generalization of the approach presented in paper [1], and it is based on the requirement that quasi-homogeneity is a non-trivial symmetry for the Pfaffian form δQrev\delta Q_{rev}. It is shown that quasi-homogeneous thermodynamics fits the thermodynamic features of at least some self-gravitating systems. We analyze how quasi-homogeneous thermodynamics is suggested by black hole thermodynamics. Then, some existing results involving self-gravitating systems are also shortly discussed in the light of this thermodynamic framework. The consequences of the lack of extensivity are also recalled. We show that generalized Gibbs-Duhem equations arise as a consequence of quasi-homogeneity of the thermodynamic potentials. An heuristic link between this generalized thermodynamic formalism and the thermodynamic limit is also discussed.Comment: 39 pages, uses RevteX. Published version (minor changes w.r.t. the original one

    Accessibility of physical states and non-uniqueness of entanglement measure

    Full text link
    Ordering physical states is the key to quantifying some physical property of the states uniquely. Bipartite pure entangled states are totally ordered under local operations and classical communication (LOCC) in the asymptotic limit and uniquely quantified by the well-known entropy of entanglement. However, we show that mixed entangled states are partially ordered under LOCC even in the asymptotic limit. Therefore, non-uniqueness of entanglement measure is understood on the basis of an operational notion of asymptotic convertibility.Comment: 8 pages, 1 figure. v2: main result unchanged but presentation extensively changed. v3: figure added, minor correction

    Chemical Potential and the Nature of the Dark Energy: The case of phantom

    Full text link
    The influence of a possible non zero chemical potential μ\mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state (EoS), p=ωρp=\omega \rho (ω<0,constant\omega <0, constant). The entropy condition, S0S \geq 0, implies that the possible values of ω\omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For μ>0\mu >0, the ω\omega-parameter must be greater than -1 (vacuum is forbidden) while for μ<0\mu < 0 not only the vacuum but even a phantomlike behavior (ω<1\omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, μ/T=μ0/T0\mu/T=\mu_0/T_0. Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons μ\mu is always negative and the extended Wien's law allows only a dark component with ω<1/2\omega < -1/2 which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for μ0\mu 0 are permmited only if 1<ω<1/2-1 < \omega < -1/2. The thermodynamics and statistical arguments constrain the EoS parameter to be ω<1/2\omega < -1/2, a result surprisingly close to the maximal value required to accelerate a FRW type universe dominated by matter and dark energy (ω10/21\omega \lesssim -10/21).Comment: 7 pages, 5 figure

    Representations of the exceptional and other Lie algebras with integral eigenvalues of the Casimir operator

    Full text link
    The uniformity, for the family of exceptional Lie algebras g, of the decompositions of the powers of their adjoint representations is well-known now for powers up to the fourth. The paper describes an extension of this uniformity for the totally antisymmetrised n-th powers up to n=9, identifying (see Tables 3 and 6) families of representations with integer eigenvalues 5,...,9 for the quadratic Casimir operator, in each case providing a formula (see eq. (11) to (15)) for the dimensions of the representations in the family as a function of D=dim g. This generalises previous results for powers j and Casimir eigenvalues j, j<=4. Many intriguing, perhaps puzzling, features of the dimension formulas are discussed and the possibility that they may be valid for a wider class of not necessarily simple Lie algebras is considered.Comment: 16 pages, LaTeX, 1 figure, 9 tables; v2: presentation improved, typos correcte

    Accurate first principles detailed balance determination of Auger recombination and impact ionization rates in semiconductors

    Full text link
    The technologically important problem of predicting Auger recombination lifetimes in semiconductors is addressed by means of a fully first--principles formalism. The calculations employ highly precise energy bands and wave functions provided by the full--potential linearized augmented plane wave (FLAPW) code based on the screened exchange local density approximation. The minority carrier Auger lifetime is determined by two closely related approaches: \emph{i}) a direct evaluation of the Auger rates within Fermi's Golden Rule, and \emph{ii}) an indirect evaluation, based on a detailed balance formulation combining Auger recombination and its inverse process, impact ionization, in a unified framework. Calculated carrier lifetimes determined with the direct and indirect methods show excellent consistency \emph{i}) between them for nn-doped GaAs and \emph{ii}%) with measured values for GaAs and InGaAs. This demonstrates the validity and accuracy of the computational formalism for the Auger lifetime and indicates a new sensitive tool for possible use in materials performance optimization.Comment: Phys. Rev. Lett. accepte

    Photoproduction evidence for and against hidden-strangeness states near 2 GeV

    Get PDF
    Experimental evidence from coherent diffractive proton scattering has been reported for two narrow baryonic resonances which decay predominantly to strange particles. These states, with masses close to 2.0 GeV would, if confirmed, be candidates for hidden strangeness states with unusual internal structure. In this paper we examine the literature on strangeness photoproduction, to seek additional evidence for or against these states. We find that one state is not confirmed, while for the other state there is some mild supporting evidence favoring its existence. New experiments are called for, and the expected photoproduction lineshapes are calculated.Comment: 9 pages, RevTex, five postscript figures, submitted to PR

    Condensation of Ideal Bose Gas Confined in a Box Within a Canonical Ensemble

    Full text link
    We set up recursion relations for the partition function and the ground-state occupancy for a fixed number of non-interacting bosons confined in a square box potential and determine the temperature dependence of the specific heat and the particle number in the ground state. A proper semiclassical treatment is set up which yields the correct small-T-behavior in contrast to an earlier theory in Feynman's textbook on Statistical Mechanics, in which the special role of the ground state was ignored. The results are compared with an exact quantum mechanical treatment. Furthermore, we derive the finite-size effect of the system.Comment: 18 pages, 8 figure
    corecore