2 research outputs found
Triangulations and Severi varieties
We consider the problem of constructing triangulations of projective planes
over Hurwitz algebras with minimal numbers of vertices. We observe that the
numbers of faces of each dimension must be equal to the dimensions of certain
representations of the automorphism groups of the corresponding Severi
varieties. We construct a complex involving these representations, which should
be considered as a geometric version of the (putative) triangulations