1,325 research outputs found

    Probing dissipation mechanisms in BL Lac jets through X-ray polarimetry

    Get PDF
    The dissipation of energy flux in blazar jets plays a key role in the acceleration of relativistic particles. Two possibilities are commonly considered for the dissipation processes, magnetic reconnection -- possibly triggered by instabilities in magnetically-dominated jets -- , or shocks -- for weakly magnetized flows. We consider the polarimetric features expected for the two scenarios analyzing the results of state-of-the-art simulations. For the magnetic reconnection scenario we conclude, using results from global relativistic MHD simulations, that the emission likely occurs in turbulent regions with unstructured magnetic fields, although the simulations do not allow us to draw firm conclusions. On the other hand, with local particle-in-cell simulations we show that, for shocks with a magnetic field geometry suitable for particle acceleration, the self-generated magnetic field at the shock front is predominantly orthogonal to the shock normal and becomes quasi-parallel downstream. Based on this result we develop a simplified model to calculate the frequency-dependent degree of polarization, assuming that high-energy particles are injected at the shock and cool downstream. We apply our results to HBLs, blazars with the maximum of their synchrotron output at UV-soft X-ray energies. While in the optical band the predicted degree of polarization is low, in the X-ray emission it can ideally reach 50\%, especially during active/flaring states. The comparison between measurements in the optical and in the X-ray band made during active states (feasible with the planned {\it IXPE} satellite) are expected to provide valuable constraints on the dissipation and acceleration processes.Comment: 9 pages, 6 figures, accepted for publication by MNRA

    Ethical issues associated with in-hospital emergency from the medical emergency team's perspective: a national survey

    Get PDF
    Medical Emergency Teams (METs) are frequently involved in ethical issues associated to in-hospital emergencies, like decisions about end-of-life care and intensive care unit (ICU) admission. MET involvement offers both advantages and disadvantages, especially when an immediate decision must be made. We performed a survey among Italian intensivists/anesthesiologists evaluating MET's perspective on the most relevant ethical aspects faced in daily practice

    The Effect of Statins on Mortality in Septic Patients: a Meta-Analysis of Randomized Controlled Trials

    Get PDF
    OBJECTIVE: Statins are among the most prescribed drugs worldwide and their recently discovered anti-inflammatory effect seems to have an important role in inhibiting proinflammatory cytokine production, chemokines expression and counteracting the harmful effects of sepsis on the coagulation system. We decided to perform a meta-analysis of all randomized controlled trials ever published on statin therapy in septic patients to evaluate their effect on survival and length of hospital stay. DATA SOURCES AND STUDY SELECTION: Articles were assessed by four trained investigators, with divergences resolved by consensus. BioMedCentral, PubMed, Embase and the Cochrane Central Register of clinical trials were searched for pertinent studies. Inclusion criteria were random allocation to treatment and comparison of statins versus any comparator in septic patients. DATA EXTRACTION AND SYNTHESIS: Data from 650 patients in 5 randomized controlled studies were analyzed. No difference in mortality between patients receiving statins versus control (44/322 [14%] in the statins group vs 50/328 [15%] in the control arm, RR = 0.90 [95% CI 0.65 to 1.26], p = 0.6) was observed. No differences in hospital stay (p = 0.7) were found. CONCLUSIONS: Published data show that statin therapy has no effect on mortality in the overall population of adult septic patients. Scientific evidence on statins role in septic patients is still limited and larger randomized trials should be performed on this topic

    The Gamma-ray Blazar Quest: new optical spectra, state of art and future perspectives

    Full text link
    We recently developed a procedure to recognize gamma-ray blazar candidates within the positional uncertainty regions of the unidentified/unassociated gamma-ray sources (UGSs). Such procedure was based on the discovery that Fermi blazars show peculiar infrared colors. However, to confirm the real nature of the selected candidates, optical spectroscopic data are necessary. Thus, we performed an extensive archival search for spectra available in the literature in parallel with an optical spectroscopic campaign aimed to reveal and confirm the nature of the selected gamma-ray blazar candidates. Here, we first search for optical spectra of a selected sample of gamma-ray blazar candidates that can be potential counterparts of UGSs using the Sloan Digital Sky Survey (SDSS DR12). This search enables us to update the archival search carried out to date. We also describe the state-of-art and the future perspectives of our campaign to discover previously unknown gamma-ray blazars.Comment: 11 pages, 2 figures, 5 tables, pre-proof version, accepted for publication of Astrophysics and Space Scienc

    Stereoselective pharmacokinetics of ketamine and norketamine after racemic ketamine or S-ketamine administration during isoflurane anaesthesia in Shetland ponies

    Get PDF
    Background The arterial pharmacokinetics of ketamine and norketamine enantiomers after racemic ketamine or S-ketamine i.v. administration were evaluated in seven gelding ponies in a crossover study (2-month interval). Methods Anaesthesia was induced with isoflurane in oxygen via a face-mask and then maintained at each pony's individual MAC. Racemic ketamine (2.2mgkg−1) or S-ketamine (1.1mgkg−1) was injected in the right jugular vein. Blood samples were collected from the right carotid artery before and at 1, 2, 4, 8, 16, 32, 64, and 128min after ketamine administration. Ketamine and norketamine enantiomer plasma concentrations were determined by capillary electrophoresis. Individual R-ketamine and S-ketamine concentration vs time curves were analysed by non-linear least square regression two-compartment model analysis using PCNonlin. Plasma disposition curves for R-norketamine and S-norketamine were described by estimating AUC, Cmax, and Tmax. Pulse rate (PR), respiratory rate (Rf), tidal volume (VT), minute volume ventilation (VE), end-tidal partial pressure of carbon dioxide (Pe′CO2), and mean arterial blood pressure (MAP) were also evaluated. Results The pharmacokinetic parameters of S- and R-ketamine administered in the racemic mixture or S-ketamine administered separately did not differ significantly. Statistically significant higher AUC and Cmax were found for S-norketamine compared with R-norketamine in the racemic group. Overall, Rf, VE, Pe′CO2, and MAP were significantly higher in the racemic group, whereas PR was higher in the S-ketamine group. Conclusions Norketamine enantiomers showed different pharmacokinetic profiles after single i.v. administration of racemic ketamine in ponies anaesthetised with isoflurane in oxygen (1 MAC). Cardiopulmonary variables require further investigatio

    OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. VI. FURTHER OBSERVATIONS FROM TNG, WHT, OAN, SOAR, AND MAGELLAN TELESCOPES

    Get PDF
    Indexación: Web of ScienceBlazars, one of the most extreme classes of active galaxies, constitute so far the largest known population of.-ray sources, and their number is continuously growing in the Fermi catalogs. However, in the latest release of the Fermi catalog there is still a large fraction of sources that are classified as blazar candidates of uncertain type (BCUs) for which optical spectroscopic observations are necessary to confirm their nature and their associations. In addition, about one-third of the gamma-ray point sources listed in the Third Fermi-LAT Source Catalog (3FGL) are still unassociated and lacking an assigned lower-energy counterpart. Since 2012 we have been carrying out an optical spectroscopic campaign to observe blazar candidates to confirm their nature. In this paper, the sixth of the series, we present optical spectroscopic observations for 30 gamma-ray blazar candidates from different observing programs we carried out with the Telescopio Nazionale Galileo, William Herschel Telescope, Observatorio Astronomico Nacional, Southern Astrophysical Research Telescope, and Magellan. Telescopes. We found that 21 out of 30 sources investigated are BL Lac objects, while the remaining targets are classified as flat-spectrum radio quasars showing the typical broad emission lines of normal quasi-stellar objects. We conclude that our selection of gamma-ray blazar. candidates based on their multifrequency properties continues to be a successful way to discover potential low-energy counterparts of the Fermi. unidentified gamma-ray sources and to confirm the nature of BCUs.http://iopscience.iop.org/article/10.3847/0004-6256/151/4/95/met

    ESPRESSO: The next European exoplanet hunter

    Full text link
    The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined-Coud\'e Laboratory of the VLT and linked to the four 8.2 m Unit Telescopes (UT) through four optical Coud\'e trains. ESPRESSO will combine efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve a gain of two magnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reach the 10 cm/s level. It can be operated either with a single UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allow to explore new frontiers in most domains of astrophysics that require precision and sensitivity. The main scientific drivers are the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby G to M-dwarfs and the analysis of the variability of fundamental physical constants. The project passed the final design review in May 2013 and entered the manufacturing phase. ESPRESSO will be installed at the Paranal Observatory in 2016 and its operation is planned to start by the end of the same year.Comment: 12 pages, figures included, accepted for publication in Astron. Nach
    corecore