5,926 research outputs found
Decoherence suppression via environment preparation
To protect a quantum system from decoherence due to interaction with its
environment, we investigate the existence of initial states of the environment
allowing for decoherence-free evolution of the system. For models in which a
two-state system interacts with a dynamical environment, we prove that such
states exist if and only if the interaction and self-evolution Hamiltonians
share an eigenstate. If decoherence by state preparation is not possible, we
show that initial states minimizing decoherence result from a delicate
compromise between the environment and interaction dynamics.Comment: 4 pages, 2 figure
Overview of NASA Behavioral Health and Performance Standard Measures
NASAs Human Research Program (HRP) is developing a set of Standard Measures for use in spaceflight and spaceflight analog environments to monitor the risks of long-duration missions on human health and performance, including behavioral health, individual and team performance, and social processes. Based on measures selected, developed, and tested under the NASA-funded Behavioral Core Measures project (PI: D.F. Dinges) as well as other projects from NASAs Human Factors & Behavioral Performance research portfolio, NASAs Behavioral Health & Performance (BHP) Laboratory is further evaluating the operational feasibility, acceptability, and validity of a multidisciplinary suite of objective, subjective, behavioral, and biological measures for monitoring monitor behavioral health, individual and team performance, and social processes over time. The inaugural generation of the NASA Behavioral Health & Performance (BHP) Standard Measures includes a neurocognitive test battery, actigraphy, physical proximity sensors, cardiovascular monitors, and subjective self-reports of mood, depression, and various team and social processes and performance outcomes
Deviational simulation of phonon transport in graphene ribbons with ab initio scattering
We present a deviational Monte Carlo method for solving the Boltzmann-Peierls equation with ab initio 3-phonon scattering, for temporally and spatially dependent thermal transport problems in arbitrary geometries. Phonon dispersion relations and transition rates for graphene are obtained from density functional theory calculations. The ab initio scattering operator is simulated by an energy-conserving stochastic algorithm embedded within a deviational, low-variance Monte Carlo formulation. The deviational formulation ensures that simulations are computationally feasible for arbitrarily small temperature differences, while the stochastic treatment of the scattering operator is both efficient and exhibits no timestep error. The proposed method, in which geometry and phonon-boundary scattering are explicitly treated, is extensively validated by comparison to analytical results, previous numerical solutions and experiments. It is subsequently used to generate solutions for heat transport in graphene ribbons of various geometries and evaluate the validity of some common approximations found in the literature. Our results show that modeling transport in long ribbons of finite width using the homogeneous Boltzmann equation and approximating phonon-boundary scattering using an additional homogeneous scattering rate introduces an error on the order of 10% at room temperature, with the maximum deviation reaching 30% in the middle of the transition regime.Singapore-MIT Alliance for Research and TechnologyAmerican Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.). Graduate Research Fellowshi
Kitaev's quantum double model from a local quantum physics point of view
A prominent example of a topologically ordered system is Kitaev's quantum
double model for finite groups (which in particular
includes , the toric code). We will look at these models from
the point of view of local quantum physics. In particular, we will review how
in the abelian case, one can do a Doplicher-Haag-Roberts analysis to study the
different superselection sectors of the model. In this way one finds that the
charges are in one-to-one correspondence with the representations of
, and that they are in fact anyons. Interchanging two of such
anyons gives a non-trivial phase, not just a possible sign change. The case of
non-abelian groups is more complicated. We outline how one could use
amplimorphisms, that is, morphisms to study the superselection
structure in that case. Finally, we give a brief overview of applications of
topologically ordered systems to the field of quantum computation.Comment: Chapter contributed to R. Brunetti, C. Dappiaggi, K. Fredenhagen, J.
Yngvason (eds), Advances in Algebraic Quantum Field Theory (Springer 2015).
Mainly revie
Rank-based model selection for multiple ions quantum tomography
The statistical analysis of measurement data has become a key component of
many quantum engineering experiments. As standard full state tomography becomes
unfeasible for large dimensional quantum systems, one needs to exploit prior
information and the "sparsity" properties of the experimental state in order to
reduce the dimensionality of the estimation problem. In this paper we propose
model selection as a general principle for finding the simplest, or most
parsimonious explanation of the data, by fitting different models and choosing
the estimator with the best trade-off between likelihood fit and model
complexity. We apply two well established model selection methods -- the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC) -- to
models consising of states of fixed rank and datasets such as are currently
produced in multiple ions experiments. We test the performance of AIC and BIC
on randomly chosen low rank states of 4 ions, and study the dependence of the
selected rank with the number of measurement repetitions for one ion states. We
then apply the methods to real data from a 4 ions experiment aimed at creating
a Smolin state of rank 4. The two methods indicate that the optimal model for
describing the data lies between ranks 6 and 9, and the Pearson test
is applied to validate this conclusion. Additionally we find that the mean
square error of the maximum likelihood estimator for pure states is close to
that of the optimal over all possible measurements.Comment: 24 pages, 6 figures, 3 table
Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant
Jet event rates in deep inelastic ep scattering at HERA are investigated
applying the modified JADE jet algorithm. The analysis uses data taken with the
H1 detector in 1994 and 1995. The data are corrected for detector and
hadronization effects and then compared with perturbative QCD predictions using
next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2)
is determined evaluating the jet event rates. Values of alpha_S(Q^2) are
extracted in four different bins of the negative squared momentum
transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the
renormalization group equation to these several alpha_S(Q^2) values results in
alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys.
J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are
studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet
events has been determined with the modified JADE jet algorithm as a function
of the jet resolution parameter and is compared with the predictions of Monte
Carlo models. In addition, the event rate is corrected for both hadronization
and detector effects and is compared with next-to-leading order QCD
calculations. A value of the strong coupling constant of alpha_s(M_Z^2)=
0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is
extracted. The systematic error includes uncertainties in the calorimeter
energy calibration, in the description of the data by current Monte Carlo
models, and in the knowledge of the parton densities. The theoretical error is
dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA
The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph
- …
