9,179 research outputs found
Multi-k magnetic structures in USb_{0.9}Te_{0.1} and UAs_{0.8}Se_{0.2} observed via resonant x-ray scattering at the U M4 edge
Experiments with resonant photons at the U M4 edge have been performed on a
sample of USb_{0.9}Te_{0.1}, which has an incommensurate magnetic structure
with k = 0.596(2) reciprocal lattice units. The reflections of the form ,
as observed previously in a commensurate k = 1/2 system [N. Bernhoeft et al.,
Phys. Rev. B 69 174415 (2004)] are observed, removing any doubt that these
occur because of multiple scattering or high-order contamination of the
incident photon beam. They are clearly connected with the presence of a 3k
configuration. Measurements of the reflections from the sample
UAs_{0.8}Se_{0.2} in a magnetic field show that the transition at T* ~ 50 K is
between a low-temperature 2k and high-temperature 3k state and that this
transition is sensitive to an applied magnetic field. These experiments stress
the need for quantitative theory to explain the intensities of these
reflections.Comment: submitted to Phys. Rev.
Probability distribution of the maximum of a smooth temporal signal
We present an approximate calculation for the distribution of the maximum of
a smooth stationary temporal signal X(t). As an application, we compute the
persistence exponent associated to the probability that the process remains
below a non-zero level M. When X(t) is a Gaussian process, our results are
expressed explicitly in terms of the two-time correlation function,
f(t)=.Comment: Final version (1 major typo corrected; better introduction). Accepted
in Phys. Rev. Let
Introduction to the Special Issue: Human Linkage Studies for Behavioral Traits
In the post Genome era, the aim of behavior genetics has shifted from estimating the relative contributions of genes and environmental factors to (co-)variation in human complex traits, to localization of genes and identification of functional genetic variants. This special issue reflects this transition and presents fifteen papers that report on genome-wide linkage scans for complex traits in humans and on methodological tools and innovations. Six papers focus on cognition and report overlapping linkage peaks on chromosomes 6p and 14p. Papers on addictive behavior, i.e. smoking and alcohol dependence and its endophenotypes, find moderate LOD scores on chromosomes 6p, 5q, 4p and 7q, respectively. Three papers concentrate on emotionality, depression and loneliness and examine chromosomes 2q and 12q. The papers in this issue represent a summary of the first large scale linkage enterprises of human behavioral traits. © 2006 Springer Science+Business Media, Inc.link_to_subscribed_fulltex
Bulk-sensitive Photoemission of Mn5Si3
We have carried out a bulk-sensitive high-resolution photoemission experiment
on Mn5Si3. The measurements are performed for both core level and valence band
states. The Mn core level spectra are deconvoluted into two components
corresponding to different crystallographic sites. The asymmetry of each
component is of noticeable magnitude. In contrast, the Si 2p spectrum shows a
simple Lorentzian shape with low asymmetry. The peaks of the valence band
spectrum correspond well to the peak positions predicted by the former band
calculation.Comment: To be published in: Solid State Communication
Development of Readout Interconnections for the Si-W Calorimeter of SiD
The SiD collaboration is developing a Si-W sampling electromagnetic
calorimeter, with anticipated application for the International Linear
Collider. Assembling the modules for such a detector will involve special
bonding technologies for the interconnections, especially for attaching a
silicon detector wafer to a flex cable readout bus. We review the interconnect
technologies involved, including oxidation removal processes, pad surface
preparation, solder ball selection and placement, and bond quality assurance.
Our results show that solder ball bonding is a promising technique for the Si-W
ECAL, and unresolved issues are being addressed.Comment: 8 pages + title, 6 figure
Partial differential equations for self-organization in cellular and developmental biology
Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field
Charge density waves and surface Mott insulators for adlayer structures on semiconductors: extended Hubbard modeling
Motivated by the recent experimental evidence of commensurate surface charge
density waves (CDW) in Pb/Ge(111) and Sn/Ge(111) sqrt{3}-adlayer structures, as
well as by the insulating states found on K/Si(111):B and SiC(0001), we have
investigated the role of electron-electron interactions, and also of
electron-phonon coupling, on the narrow surface state band originating from the
outer dangling bond orbitals of the surface. We model the sqrt{3} dangling bond
lattice by an extended two-dimensional Hubbard model at half-filling on a
triangular lattice. We include an on-site Hubbard repulsion U and a
nearest-neighbor Coulomb interaction V, plus a long-ranged Coulomb tail. The
electron-phonon interaction is treated in the deformation potential
approximation. We have explored the phase diagram of this model including the
possibility of commensurate 3x3 phases, using mainly the Hartree-Fock
approximation. For U larger than the bandwidth we find a non-collinear
antiferromagnetic SDW insulator, possibly corresponding to the situation on the
SiC and K/Si surfaces. For U comparable or smaller, a rich phase diagram
arises, with several phases involving combinations of charge and
spin-density-waves (SDW), with or without a net magnetization. We find that
insulating, or partly metallic 3x3 CDW phases can be stabilized by two
different physical mechanisms. One is the inter-site repulsion V, that together
with electron-phonon coupling can lower the energy of a charge modulation. The
other is a novel magnetically-induced Fermi surface nesting, stabilizing a net
cell magnetization of 1/3, plus a collinear SDW, plus an associated weak CDW.
Comparison with available experimental evidence, and also with first-principle
calculations is made.Comment: 11 pages, 9 figure
Regional differences in the spatial and temporal heterogeneity of oceanographic habitat used by Steller sea lions
Over the past three decades, the decline and altered spatial distribution of the western stock of Steller sea lions (Eumetopias jubatus) in Alaska have been attributed to changes in the distribution or abundance of their prey due to the cumulative effects of fisheries and environmental perturbations. During this period, dietary prey occurrence and diet diversity were related to population decline within metapopulation regions of the western stock of Steller sea lions, suggesting that environmental conditions may be variable among regions. The objective of this study, therefore, was to examine regional differences in the spatial and temporal heterogeneity of oceanographic habitat used by Steller sea lions within the context of recent measures of diet diversity and population trajectories. Habitat use was assessed by deploying satellite-depth recorders and satellite relay data loggers on juvenile Steller sea lions (n = 45) over a five-year period (2000–2004) within four regions of the western stock, including the western, central, and eastern Aleutian Islands, and central Gulf of Alaska. Areas used by sea lions during summer months (June, July, and August) were demarcated using satellite telemetry data and characterized by environmental variables (sea surface temperature [SST] and chlorophyll a [chl a]), which possibly serve as proxies for environmental processes or prey. Spatial patterns of SST diversity and Steller sea lion population trends among regions were fairly consistent with trends reported for diet studies, possibly indicating a link between environmental diversity, prey diversity, and distribution or abundance of Steller sea lions. Overall, maximum spatial heterogeneity coupled with minimal temporal variability of SST appeared to be beneficial for Steller sea lions. In contrast, these patterns were not consistent for chl a, and there appeared to be an ecological threshold. Understanding how Steller sea lions respond to measures of environmental heterogeneity will ultimately be useful for implementing ecosystem management approaches and developing additional conservation strategies
- …