14,230 research outputs found

    Magnetic double refraction in piezoelectrics

    Full text link
    A new type of magneto-optical effect in piezoelectrics is predicted. A low frequency behavior of Faraday effect is found.Comment: 2 pages, to be published in Europhys. Lett

    Macroscopic quantum effects generated by the acoustic wave in a molecular magnet

    Full text link
    We have shown that the size of the magnetization step due to resonant spin tunneling in a molecular magnet can be strongly affected by sound. The transverse acoustic wave can also generate macroscopic quantum beats of the magnetization during the field sweep.Comment: 4 pages, 6 figure

    Rotational Doppler Effect in Magnetic Resonance

    Get PDF
    We compute the shift in the frequency of the spin resonance in a solid that rotates in the field of a circularly polarized electromagnetic wave. Electron spin resonance, nuclear magnetic resonance, and ferromagnetic resonance are considered. We show that contrary to the case of the rotating LC circuit, the shift in the frequency of the spin resonance has strong dependence on the symmetry of the receiver. The shift due to rotation occurs only when rotational symmetry is broken by the anisotropy of the gyromagnetic tensor, by the shape of the body, or by magnetocrystalline anisotropy. General expressions for the resonance frequency and power absorption are derived and implications for experiment are discussed.Comment: 8 pages, 4 figure

    Vanishing bulk viscosities and conformal invariance of unitary Fermi gas

    Full text link
    By requiring general-coordinate and conformal invariance of the hydrodynamic equations, we show that the unitary Fermi gas has zero bulk viscosity, zeta=0, in the normal phase. In the superfluid phase, two of the bulks viscosities have to vanish, zeta_1=zeta_2=0, while the third one zeta_3 is allowed to be nonzero.Comment: 4 page

    Infra-Red Surface-Plasmon-Resonance technique for biological studies

    Full text link
    We report on a Surface-Plasmon-Resonance (SPR) technique based on Fourier -Transform - Infra - Red (FTIR) spectrometer. In contrast to the conventional surface plasmon technique, operating at a fixed wavelength and a variable angle of incidence, our setup allows the wavelength and the angle of incidence to be varied simultaneously. We explored the potential of the SPR technique in the infrared for biological studies involving aqueous solutions. Using computer simulations, we found the optimal combination of parameters (incident angle, wavelength) for performing this task. Our experiments with physiologically important glucose concentrations in water and in human plasma verified our computer simulations. Importantly, we demonstrated that the sensitivity of the SPR technique in the infrared range is not lower and in fact is even higher than that for visible light. We emphasize the advantages of infra red SPR for studying glucose and other biological molecules in living cells.Comment: 8 pages,8 figure

    Magnonic Crystal Theory of the Spin-Wave Frequency Gap in Low-Doped La1xCaxMnO3La_{1-x}Ca_{x}MnO_{3} Manganites

    Full text link
    A theory of three-dimensional (3D) hypothetical magnonic crystal (conceived as the magnetic counterpart of the well-known photonic crystal) is developed and applied to explain the existence of a spin-wave frequency gap recently revealed in low-doped manganites La1xCaxMnO3La_{1-x}Ca_{x}MnO_{3} by neutron scattering. A successful confrontation with the experimental results allows us to formulate a working hypothesis that certain manganites could be regarded as 3D magnonic crystals existing in nature.Comment: 5 pages, 3 figures, submitted to PR

    Impact parameter dependence of heavy ion e+ e- pair production to all orders in Z alpha

    Get PDF
    The heavy ion probability for continuum e+ e- pair production has been calculated to all orders in Z alpha as a function of impact parameter. The formula resulting from an exact solution of the semiclassical Dirac equation in the ultrarelativistic limit is evaluated numerically. In a calculation of gamma = 100 colliding Au ions the probability of e+ e- pair production is reduced from the perturbation theory result throughout the impact parameter range.Comment: 20 pages, latex, revtex, 6 eps figures. Revised Phys. Rev. C version with minor additions, one figure added, and added reference

    Low energy excitations and singular contributions in the thermodynamics of clean Fermi liquids

    Full text link
    Using a recently suggested method of bosonization in an arbitrary dimension, we study the anomalous contribution of the low energy spin and charge excitations to thermodynamic quantities of a two-dimensional (2D) Fermi liquid. The method is slightly modified for the present purpose such that the effective supersymmetric action no longer contains the high energy degrees of freedom but still accounts for effects of the finite curvature of the Fermi surface. Calculating the anomalous contribution δc(T)\delta c(T) to the specific heat, we show that the leading logarithmic in temperature corrections to δc(T)/T2\delta c(T)/T^2 can be obtained in a scheme combining a summation of ladder diagrams and renormalization group equations. The final result is represented as the sum of two separate terms that can be interpreted as coming from singlet and triplet superconducting excitations. The latter may diverge in certain regions of the coupling constants, which should correspond to the formation of triplet Cooper pairs.Comment: 29 pages, 13 figure

    Incomplete Photonic Bandgap as Inferred from the Speckle Pattern of Scattered Light Waves

    Full text link
    Motivated by recent experiments on intensity correlations of the waves transmitted through disordered media, we demonstrate that the speckle pattern from disordered photonic crystal with incomplete band-gap represents a sensitive tool for determination the stop-band width. We establish the quantitative relation between this width and the {\em angualar anisotropy} of the intensity correlation function.Comment: 6 pages, 3 figure

    Measuring nonadiabaticity of molecular quantum dynamics with quantum fidelity and with its efficient semiclassical approximation

    Full text link
    We propose to measure nonadiabaticity of molecular quantum dynamics rigorously with the quantum fidelity between the Born-Oppenheimer and fully nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies in situations where other criteria, such as the energy gap criterion or the extent of population transfer, fail. We further propose to estimate this quantum fidelity efficiently with a generalization of the dephasing representation to multiple surfaces. Two variants of the multiple-surface dephasing representation (MSDR) are introduced, in which the nuclei are propagated either with the fewest-switches surface hopping (FSSH) or with the locally mean field dynamics (LMFD). The LMFD can be interpreted as the Ehrenfest dynamics of an ensemble of nuclear trajectories, and has been used previously in the nonadiabatic semiclassical initial value representation. In addition to propagating an ensemble of classical trajectories, the MSDR requires evaluating nonadiabatic couplings and solving the Schr\"{o}dinger (or more generally, the quantum Liouville-von Neumann) equation for a single discrete degree of freedom. The MSDR can be also used to measure the importance of other terms present in the molecular Hamiltonian, such as diabatic couplings, spin-orbit couplings, or couplings to external fields, and to evaluate the accuracy of quantum dynamics with an approximate nonadiabatic Hamiltonian. The method is tested on three model problems introduced by Tully, on a two-surface model of dissociation of NaI, and a three-surface model including spin-orbit interactions. An example is presented that demonstrates the importance of often-neglected second-order nonadiabatic couplings.Comment: 14 pages, 4 figures, submitted to J. Chem. Phy
    corecore