175 research outputs found

    Artificial Maturation of Alginite and Organic Groundmass Separated from Torbanites

    Get PDF
    The two principal organic constituents — Botryococcus-related alginite and organic groundmass — were isolated by density separation from two torbanite samples (from the Stellarton Fm., Nova Scotia, Canada and the King Cannel, Utah, USA). The groundmass consisted of degraded algal, bacterial and terrestrial plant debris. Aliquots of alginite and groundmass were separately heated in gold tubes for 24 hr. with 70 MPa confining pressure, at fixed temperatures ranging between 250 and 375°C. The 250, 300 and 325°C experiments run on the alginite produced very low yields of CHCl3-extractable organic matter (EOM), indicating that very little of the generation potential had been tapped. The alginite reached the onset of generation at 350° and peaked at 375°. The groundmass exhibited a distinctly different response to heating. Its 300, 325 and 350°C experiments showed a progressive increase in EOM yield with increasing temperature, producing more EOM than the corresponding alginite runs, in spite of the lower initial generation potential of the groundmass. However, EOM yields were lower at 375°C, indicating that its peak generation had occurred at 350°. After heating, the CHCl3-extracted residues were analyzed by Rock Eval and flash pyrolysis-GC/MS to determine the remaining petroleum potential and monitor the alterations in the macromolecular structure. In nature, petroleum generated from a torbanite would be a mixture of the liquids generated by each of its components, in a blend that would change as thermal alteration progressed, as the various constituents each reached their peak of generation. Such a multi-component model of torbanite composition can serve to improve predictions of oil generation from torbanites and related source rocks in sedimentary basins

    Risk-based selection in unemployment insurance: evidence and implications

    Get PDF
    This paper studies whether adverse selection can rationalize a universal mandate for unemployment insurance (UI). Building on a unique feature of the unemployment policy in Sweden, where workers can opt for supplemental UI coverage above a minimum mandate, we provide the first direct evidence for adverse selection in UI and derive its implications for UI design. We find that the unemployment risk is more than twice as high for workers who buy supplemental coverage, even when controlling for a rich set of observables. Exploiting variation in risk and prices to control for moral hazard, we show how this correlation is driven by substantial risk-based selection. Despite the severe adverse selection, we find that mandating the supplemental coverage is dominated by a design leaving the choice to workers. In this design, a large subsidy for supplemental coverage is optimal and complementary to the use of a minimum mandate. Our findings raise questions about the desirability of the universal mandate of generous UI in other countries, which has not been tested befor

    Risk-based selection in unemployment insurance: evidence and Implications

    Get PDF
    This paper studies whether adverse selection can rationalize a universal mandate for unemployment insurance (UI). Building on a unique feature of the unemployment policy in Sweden, where workers can opt for supplemental UI coverage above a minimum mandate, we provide the first direct evidence for adverse selection in UI and derive its implications for UI design. We find that the unemployment risk is more than twice as high for workers who buy supplemental coverage. Exploiting variation in risk and prices, we show how 25- 30 percent of this correlation is driven by risk- based selection, with the remainder driven by moral hazard. Due to the moral hazard and despite the adverse selection we find that mandating the supplemental coverage to individuals with low willingness- to-pay would be suboptimal. We show under which conditions a design leaving choice to workers would dominate a UI system with a single mandate. In this design, using a subsidy for supplemental coverage is optimal and complementary to the use of a minimum mandate

    Separation and Artificial Maturation of Macerals from Type II Kerogen

    Get PDF
    Immature Type II kerogen (HI= 660 mg/g) from the Lower Toarcian of the Paris Basin was separated into an alginite concentrate (HI = 952 mg/g) and an amorphous organic matter (AOM) concentrate (HI = 573 mg/g) by density centrifugation. The flash pyrolyzate of the alginite is characterized by high relative concentrations of several series of n-alkanones and n-alkenones (including mid-chain alkyl ketones), in addition to n-alkanes, n-alk-1-enes and n-alkadienes. To our knowledge, this Toarcian alginite is the oldest example of marine organic matter whose pyrolyzate contains mid-chain alkanones in such high relative concentrations. In sharp contrast, the AOM produced predominantly alkylbenzenes, alkylthiophenes, n-alkanes and n-alk-1-enes upon pyrolysis. Micro-FTIR spectroscopy indicated that the alginite was enriched in aliphatic C-H (particularly CH2) and depleted in aromatic C=C, relative to the AOM, consistent with the pyrolysis results. Aliquots of the concentrates were heated separately in gold tubes (24 h, 70 MPa) at fixed temperatures ranging between 250 and 375°C. Yields of liquid products as a function of temperature were initially greater for the AOM, reaching a maximum at 325°C. In contrast, the alginite yielded little liquid product at low temperatures, attaining its maximum at 350°C, at which temperature its yield greatly surpassed that of the AOM. This kerogen is a heterogeneous assemblage of fossil organic matter, exhibiting different degrees of preservation and petroleum potential. The alginite is fossilized marine algaenans with alkyl chains cross-linked by ether bridges, while the AOM component is at least in part a geopolymer with thioether linkages, the thermally labile nature of which is responsible for its lower temperature peak liquid generation. It is evident that the alginite concentrate is chemically distinct from its companion AOM in this kerogen and that the full extent of its uniqueness would not have been revealed without the density separation step

    Circadian rhythms regulate the environmental responses of net CO2 exchange in bean and cotton canopies

    Get PDF
    Studies on the dependence of the rates of ecosystem gas exchange on environmental parameters often rely on the up-scaling of leaf-level response curves ('bottom-up' approach), and/or the down-scaling of ecosystem fluxes ('top-down' approach), where one takes advantage of the natural diurnal covariation between the parameter of interest and photosynthesis rates. Partly independent from environmental variation, molecular circadian clocks drive ∼24 h oscillations in leaf-level photosynthesis, stomatal conductance and other physiological processes in plants under controlled laboratory conditions. If present and of sufficient magnitude at ecosystem scales, circadian regulation could lead to different results when using the bottom-up approach (where circadian regulation exerts a negligible influence over fluxes because the environment is modified rapidly) relative to the top-down approach (where circadian regulation could affect fluxes as it requires the passage of a few hours). Here we dissected the drivers of diurnal net CO2 exchange in canopies of an annual herb (bean) and of a perennial shrub (cotton) through a set of experimental manipulations to test for the importance of circadian regulation of net canopy CO2 exchange, relative to that of temperature and vapor pressure deficit, and to understand whether circadian regulation could affect the derivation of environmental flux dependencies. Contrary to conventional wisdom, we observed how circadian regulation exerted controls over net CO2 exchange that were of similar magnitude to the controls exerted by direct physiological responses to temperature and vapor pressure deficit. Diurnal patterns of net CO2 exchange could only be explained by considering effects of environmental responses combined with circadian effects. Consequently, we observed significantly different results when inferring the dependence of photosynthesis over temperature and vapor pressure deficit when using the top-down and the bottom up approaches.We remain indebted to E. Gerardeau, D. Dessauw, J. Jean, P. Prudent (Aïda CIRAD), J.-J. Drevon, C. Pernot (Eco&Sol INRA), B. Buatois, A. Rocheteau (CEFE CNRS), A. Pra, A. Mokhtar and the full Ecotron team, in particular C. Escape, for outstanding technical assistance during experiment set-up, plant cultivation and measurements. Earlier versions of the manuscript benefitted from comments by M. Dietze, B. Medlyn, R. Duursma and Y.-S. Lin. This study benefited from the CNRS human and technical resources allocated to the ECOTRONS Research Infrastructures as well as from the state allocation ‘Investissement d'Avenir’ ANR-11-INBS-0001, ExpeER Transnational Access program, Ramón y Cajal fellowships (RYC-2012-10970 to VRD and RYC-2008-02050 to JPF), the Erasmus Mundus Master Course Mediterranean Forestry and Natural Resources Management (MEDfOR) and internal grants from UWS-HIE to VRD and ZALF to AG. We thank the Associate Editor T. Vesala and two anonymous reviewers for their help to improve this manuscript

    1.3 Octave Supercontinuum Generation in Highly Ge-doped Photonic Crystal Fiber

    Get PDF
    We present a flat, visible 1.3-octave supercontinuum generated in a GeO2-doped photonic crystal fiber owing to an overlap of the modulation instability and Raman gain regions resulting in efficient energy transfer to new frequency component

    Clinical and molecular characterization of 17q21.31 microdeletion syndrome in 14 French patients with mental retardation.

    Get PDF
    International audienceChromosome 17q21.31 microdeletion was one of the first genomic disorders identified by chromosome microarrays. We report here the clinical and molecular characterization of a new series of 14 French patients with this microdeletion syndrome. The most frequent clinical features were hypotonia, developmental delay and facial dysmorphism, but scaphocephaly, prenatal ischemic infarction and perception deafness were also described. Genotyping of the parents showed that the parent from which the abnormality was inherited carried the H2 inversion polymorphism, confirming that the H2 allele is necessary, but not sufficient to generate the 17q21.31 microdeletion. Previously reported molecular analyses of patients with 17q21.31 microdeletion syndrome defined a 493 kb genomic fragment that was deleted in most patients after taking into account frequent copy number variations in normal controls, but the deleted interval was significantly smaller (205 kb) in one of our patients, encompassing only the MAPT, STH and KIAA1267 genes. As this patient presents the classical phenotype of 17q21.31 syndrome, these data make it possible to define a new minimal critical region of 160.8 kb, strengthening the evidence for involvement of the MAPT gene in this syndrome

    Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions

    Get PDF
    Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO2 and H2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO2 and H2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO2 and H2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies

    Night and day - Circadian regulation of night-time dark respiration and light-enhanced dark respiration in plant leaves and canopies

    Get PDF
    The potential of the vegetation to sequester C is determined by the balance between assimilation and respiration. Respiration is under environmental and substrate-driven control, but the circadian clock might also contribute. To assess circadian control on night-time dark respiration (RD) and on light enhanced dark respiration (LEDR) - the latter providing information on the metabolic reorganization in the leaf during light-dark transitions - we performed experiments in macrocosms hosting canopies of bean and cotton. Under constant darkness (plus constant air temperature and air humidity), we tested whether circadian regulation of RD scaled from leaf to canopy respiration. Under constant light (plus constant air temperature and air humidity), we assessed the potential for leaf-level circadian regulation of LEDR. There was a clear circadian oscillation of leaf-level RD in both species and circadian patterns scaled to the canopy. LEDR was under circadian control in cotton, but not in bean indicating species-specific controls. The circadian rhythm of LEDR in cotton might indicate variable suppression of the normal cyclic function of the tricarboxylic-acid-cycle in the light. Since circadian regulation is assumed to act as an adaptive memory to adjust plant metabolism based on environmental conditions from previous days, circadian control of RD may help to explain temporal variability of ecosystem respiration.This study benefited from the CNRS human and technical resources allocated to the ECOTRONS Research Infrastructures as well as from the state allocation ‘Investissement d'Avenir’ AnaEE-France ANR-11-INBS-0001, ExpeER Transnational Access program, Ramón y Cajal fellowships (RYC-2012-10970 to VRD and RYC-2008-02050 to JPF), the Erasmus Mundus Master Course MEDfOR, internal grants from UWS-HIE to VRD and ZALF to AG and Juan de la Cierva-fellowships (IJCI-2014-21393 to JGA). We remain indebted to E. Gerardeau, D. Dessauw, J. Jean, P. Prudent (Aïda CIRAD), J.-J. Drevon, C. Pernot (Eco&Sol INRA), B. Buatois, A. Rocheteau (CEFE CNRS), A. Pra, A. Mokhtar and the full Ecotron team, in particular C. Escape, for outstanding technical assistance

    Should UI Eligibility Be Expanded to Low-Earning Workers? Evidence on Employment, Transfer Receipt, and Income from Administrative Data

    Get PDF
    Recent efforts to expand unemployment insurance (UI) eligibility are expected to increase low-earning workers’ access to UI. Although the expansion’s aim is to smooth the income and consumption of previously ineligible workers, it is possible that UI benefits simply displace other sources of income. Standard economic models predict that UI delays reemployment, thereby reducing wage income. Additionally, low-earning workers are often eligible for benefits from means-tested programs, which may decrease with UI benefits. In this paper, we estimate the impact of UI eligibility on employment, means-tested program participation, and income after job loss using a unique individual-level administrative data set from the state of Michigan. To identify a causal effect, we implement a fuzzy regression discontinuity design around the minimum earnings threshold for UI eligibility. Our main finding is that while UI eligibility increases jobless durations by up to 25 percent and temporarily lowers receipt of cash assistance (TANF) by 63 percent, the net impact on total income is still positive and large. In the quarter immediately following job loss, UI-eligible workers have 46-61 percent higher incomes than ineligibles
    • …
    corecore