260 research outputs found

    A model of successful patterns of progress during the integration of software

    Get PDF
    Call number: LD2668 .T4 1986 L36Master of ScienceComputing and Information Science

    Computational Method for Estimating DNA Copy Numbers in Normal Samples, Cancer Cell Lines, and Solid Tumors Using Array Comparative Genomic Hybridization

    Get PDF
    Genomic copy number variations are a typical feature of cancer. These variations may influence cancer outcomes as well as effectiveness of treatment. There are many computational methods developed to detect regions with deletions and amplifications without estimating actual copy numbers (CN) in these regions. We have developed a computational method capable of detecting regions with deletions and amplifications as well as estimating actual copy numbers in these regions. The method is based on determining how signal intensity from different probes is related to CN, taking into account changes in the total genome size, and incorporating into analysis contamination of the solid tumors with benign tissue. Hidden Markov Model is used to obtain the most likely CN solution. The method has been implemented for Affymetrix 500K GeneChip arrays and Agilent 244K oligonucleotide arrays. The results of CN analysis for normal cell lines, cancer cell lines, and tumor samples are presented. The method is capable of detecting copy number alterations in tumor samples with up to 80% contamination with benign tissue. Analysis of 178 cancer cell lines reveals multiple regions of common homozygous deletions and strong amplifications encompassing known tumor suppressor genes and oncogenes as well as novel cancer related genes

    Prediction of Distant Recurrence-Free Survival in Resectable Lung Adenocarcinoma.

    Get PDF
    OBJECTIVES: Optimal procedures for adjuvant treatment and post-surgical surveillance of resected non-small-cell lung cancer remain under discussion. Pathological features are the main determinant of follow-up therapy but have limited ability to identify patients at risk of recurrence. Increasingly, molecular markers are incorporated into clinical decision-making, including measures of tumor growth. The CCP score is a quantitative, molecular measure of proliferation derived from the RNA expression of 31 cell cycle genes and a component of the molecular prognostic score (mPS). The mPS score is a linear combination of CCP score and pathological stage. CCP score and mPS are independent predictors of survival in resected lung adenocarcinoma. MATERIALS AND METHODS: CCP scores were determined by RT-qPCR for 318 patients diagnosed with stage I-II lung adenocarcinoma. Association of mPS and CCP score with distant recurrence and lung-cancer specific survival was assessed in Cox proportional hazards regression models adjusted for age, gender, tumor size, pathological stage and pleural invasion. Distant recurrence-free survival and lung-cancer specific survival by mPS risk group were calculated by Kaplan-Meier survival analysis. RESULTS: CCP scores were obtained for 205 stage I and 84 stage II patients. CCP score and mPS were independent markers of distant recurrence (CCP: HR 1.62, 95%CI 1.15-2.29, p=0.0055; mPS: HR 2.22, 95%CI 1.11-4.44, p=0.023). Patients with low mPS tumors were at significantly reduced risk of distant recurrence (log-rank p=4.2×10-5). Among stage I patients, stratification by mPS identified a patient group with increased risk of distant recurrence (36%, 95%CI 28-46%, log-rank p=0.0011) CONCLUSIONS: The molecular prognostic score stratifies early-stage, resected lung cancer patients for risk of distant recurrence and could be useful to inform treatment and surveillance decisions

    Long-term responders on olaparib maintenance in high-grade serous ovarian cancer: Clinical and molecular characterization

    Get PDF
    Purpose: Maintenance therapy with olaparib has improved progression-free survival in women with high-grade serous ovarian cancer (HGSOC), particularly those harboring BRCA1/2 mutations. The objective of this study was to characterize long-term (LT) versus short-term (ST) responders to olaparib. Experimental Design: A comparative molecular analysis of Study 19 (NCT00753545), a randomized phase II trial assessing olaparib maintenance after response to platinum-based chemotherapy in HGSOC, was conducted. LT response was defined as response to olaparib/placebo > 2 years, ST as < 3 months. Molecular analyses included germline BRCA1/2 status, three-biomarker homologous recombination deficiency (HRD) score, BRCA1 methylation, and mutational profiling. Another olaparib maintenance study (Study 41; NCT01081951) was used as an additional cohort. Results: Thirty-seven LT (32 olaparib) and 61 ST (21 olaparib) patients were identified. Treatment was significantly associated with outcome (P < 0.0001), with more LT patients on olaparib (60.4%) than placebo (11.1%). LT sensitivity to olaparib correlated with complete response to chemotherapy (P < 0.05). In the olaparib LT group, 244 genetic alterations were detected, with TP53, BRCA1, and BRCA2 mutations being most common (90%, 25%, and 35%, respectively). BRCA2 mutations were enriched among the LT responders. BRCA methylation was not associated with response duration. High myriad HRD score (>42) and/or BRCA1/2 mutation was associated with LT response to olaparib. Study 41 confirmed the correlation of LT response with olaparib and BRCA1/2 mutation. Conclusions: Findings show that LT response to olaparib may be multifactorial and related to homologous recombination repair deficiency, particularly BRCA1/2 defects. The type of BRCA1/2 mutation warrants further investigation. (C) 2017 AACR

    AluY-mediated germline deletion, duplication and somatic stem cell reversion in <i>UBE2T</i> defines a new subtype of Fanconi anemia

    Get PDF
    Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene.</p

    Immune response to gut escherichia coli and susceptibility to adjuvant arthritis in the rats

    Get PDF
    We have investigated the humoral immune response to antigens of predominant gut aerobic bacterial strains (i.e. Escherichia coli) over the course of adjuvant arthritis and oil-induced arthritis in two inbred rat strains: Dark Agouti (DA) and Albino Oxford (AO). We report the presence of antibodies specific to proteins of Escherichia coli in molecular weight range between 20-30 kDa in sera of diseased DA rats, and the absence of these antibodies in the sera of AO rats. In DA rats, CFA and IFA provoked a stronger antibody response to Escherichia coli, especially of the IgG2b antibody class. Intramuscular administration of Escherichia coli preceding the adjuvant arthritis induction had no effect on the development and course of disease, as well as on the activation of T cells in the draining inguinal lymph nodes. Higher serum levels of natural and induced IgA antibodies, combined with a higher CD3(+)CD26(+) cell percentage were found in AO rats. The observed correlation between the serologic response to commensal flora and rats' genetic background as a defining factor for arthritis susceptibility may contribute to the process of creating a favorable (or less favorable) milieu for arthritis development

    Association of Human Leukocyte Antigen with Interstitial Lung Disease in Rheumatoid Arthritis: A Protective Role for Shared Epitope

    Get PDF
    INTRODUCTION: Interstitial Lung Disease (ILD) is frequently associated with Rheumatoid Arthritis (RA) as one of extra-articular manifestations. Many studies for Human Leukocyte Antigen (HLA) allelic association with RA have been reported, but few have been validated in an RA subpopulation with ILD. In this study, we investigated the association of HLA class II alleles with ILD in RA. METHODS: An association study was conducted on HLA-DRB1, DQB1, and DPB1 in 450 Japanese RA patients that were or were not diagnosed with ILD, based on the findings of computed tomography images of the chest. RESULTS: Unexpectedly, HLA-DRB1*04 (corrected P [Pc] = 0.0054, odds ratio [OR] 0.57), shared epitope (SE) (P = 0.0055, OR 0.66) and DQB1*04 (Pc = 0.0036, OR 0.57) were associated with significantly decreased risk of ILD. In contrast, DRB1*16 (Pc = 0.0372, OR 15.21), DR2 serological group (DRB1*15 and *16 alleles) (P = 0.0020, OR 1.75) and DQB1*06 (Pc = 0.0333, OR 1.57, respectively) were significantly associated with risk of ILD. CONCLUSION: HLA-DRB1 SE was associated with reduced, while DR2 serological group (DRB1*15 and *16) with increased, risk for ILD in Japanese patients with RA

    Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes

    Get PDF
    BACKGROUND: Olaparib (Lynparza™) is a PARP inhibitor approved for advanced BRCA-mutated (BRCAm) ovarian cancer. PARP inhibitors may benefit patients whose tumours are dysfunctional in DNA repair mechanisms unrelated to BRCA1/2. We report exploratory analyses, including the long-term outcome of candidate biomarkers of sensitivity to olaparib in BRCA wild-type (BRCAwt) tumours. METHODS: Tumour samples from an olaparib maintenance monotherapy trial (Study 19, D0810C00019; NCT00753545) were analysed. Analyses included classification of mutations in genes involved in homologous recombination repair (HRR), BRCA1 promoter methylation status, measurement of BRCA1 protein and Myriad HRD score. RESULTS: Patients with BRCAm tumours gained most benefit from olaparib; a similar treatment benefit was also observed in 21/95 patients whose tumours were BRCAwt but had loss-of-function HRR mutations compared to patients with no detectable HRR mutations (58/95). A higher median Myriad MyChoice® HRD score was observed in BRCAm and BRCAwt tumours with BRCA1 methylation. Patients without BRCAm tumours derived benefit from olaparib treatment vs placebo although to a lesser extent than BRCAm patients.CONCLUSIONS: Ovarian cancer patients with tumours harbouring loss-of-function mutations in HRR genes other than BRCA1/2 may constitute a small, molecularly identifiable and clinically relevant population who derive treatment benefit from olaparib similar to patients with BRCAm
    corecore