23 research outputs found

    Results from the Apollo passive seismic experiment

    Get PDF
    Recent results from the Apollo seismic network suggest that primitive differentiation occurred in the outer shell of the moon to a depth of approximately 300 km; and the central region of the moon is presently molten to a radius of between 200 and 300 km. If early melting to a depth of 300 to 400 km was a consequence of accretional energy, very short accretion times are required. The best model for the zone of original differentiation appears to be a crust 40 to 80 km thick, ranging in composition from anorthositic gabbro to gabbro; overlying an ultramafic cumulate (olivine-pyroxene) about 250 km thick. The best candidate for the molten core appears to be iron or iron sulphide. A new class of seismic signals has recently been identified that may correspond to shallow moonquakes. These are rare, but much more energetic than the more numerous, deep moonquakes

    Results from the Apollo passive seismic experiment

    Get PDF
    Recent results from the Apollo Seismic Network suggest that primitive differentiation occurred in the outer shell of the moon to a depth of approximately 300 km and the central region of the moon is presently molten to a radius of between 200 and 300 km. If early melting to a depth of 300 to 400 km was a consequence of accretional energy, very short accretion times are required. It was shown that the best model for the zone of original differentiation is a crust 40 to 80 km thick, ranging in composition from anorthositic gabbro to gabbro, and overlying an ultramafic cumulate about 250 km thick. The best candidate for the molten core appears to be iron or iron sulphide. A new class of seismic signals recently were identified that may correspond to shallow moonquakes. These are rare, but much more energetic than the more numerous, deep moonquakes
    corecore