2,122 research outputs found
Recommended from our members
A New Grammar of Images: Werner Herzog and the Contemporary Philosophy of Cinema
In his central mission of working on “a new grammar of images,” the German film director Werner Herzog presents a challenge to the philosophy of cinema. Pairing Herzog’s work with Deleuzian film theory, I argue against the prevalent secondary literature that Herzog’s oeuvre engages with an anti-romantic and non-ironic material philosophy in order to provide ethical challenges to a contemporary, connected world. Specifically focusing on spatiotemporal formations derived from empirical science, I demonstrate that Herzog’s approach to cinema utilizes a four-tiered semiotic that is at its core not merely a film theory, but rather an entire material philosophy of nature with profound ethical and political implications
Act quickly, decide later: long latency visual processing underlies perceptual decisions but not reflexive behavior
Jolij J, Scholte H, Van Gaal S, Hodgson TL, Lamme VAF (2011) Act quickly, decide later: Long latency visual processing underlies perceptual decisions but not reflexive behavior. Journal of Cognitive Neuroscience 23(12), p 3734-3745
Recommended from our members
The Role of the Primary Visual Cortex in Higher Level Vision
In the classical feed-forward, modular view of visual processing, the primary visual cortex (area V1) is a module that serves to extract local features such as edges and bars. Representation and recognition of objects are thought to be functions of higher extrastriate cortical areas. This paper presents neurophysiological data that show the later part of V1 neurons’ responses reflecting higher order perceptual computations related to Ullman’s (Cognition 1984;18:97–159) visual routines and Marr’s (Vision NJ: Freeman 1982) full primal sketch, 2Image D sketch and 3D model. Based on theoretical reasoning and the experimental evidence, we propose a possible reinterpretation of the functional role of V1. In this framework, because of V1 neurons’ precise encoding of orientation and spatial information, higher level perceptual computations and representations that involve high resolution details, fine geometry and spatial precision would necessarily involve V1 and be reflected in the later part of its neurons’ activities.Mathematic
Consciousness science : real progress and lingering misconceptions.
Link_to_subscribed_fulltex
Perceptual phenomenology
I am looking at an apple. The apple has a lot of properties and some, but
not all, of these are part of my phenomenology at this moment: I am aware of these properties. And some, but not all, of these properties that I am aware of are part of my perceptual (or sensory) phenomenology. If I am attending to the apple’s color, this property will be part of my perceptual phenomenology. The property of being a granny smith apple from Chile is unlikely to be part of my perceptual phenomenology.
Here are two problems for anyone who is interested in conscious experience
in general, and perceptual experience in particular:
(a) How can we tell which properties are part of our phenomenology and
which ones are not?
(b) How can we tell which properties are part of our perceptual phenomenology and which ones are part of our non-perceptual phenomenology?
I will focus on (b) in this paper. My aim is twofold: I propose a methodology for answering the question of which properties are part of our perceptual phenomenology and I provide an example for how this methodology could be applied
On a common circle: natural scenes and Gestalt rules
To understand how the human visual system analyzes images, it is essential to
know the structure of the visual environment. In particular, natural images
display consistent statistical properties that distinguish them from random
luminance distributions. We have studied the geometric regularities of oriented
elements (edges or line segments) present in an ensemble of visual scenes,
asking how much information the presence of a segment in a particular location
of the visual scene carries about the presence of a second segment at different
relative positions and orientations. We observed strong long-range correlations
in the distribution of oriented segments that extend over the whole visual
field. We further show that a very simple geometric rule, cocircularity,
predicts the arrangement of segments in natural scenes, and that different
geometrical arrangements show relevant differences in their scaling properties.
Our results show similarities to geometric features of previous physiological
and psychophysical studies. We discuss the implications of these findings for
theories of early vision.Comment: 3 figures, 2 large figures not include
Primary visual cortex activity along the apparent-motion trace reflects illusory perception
The illusion of apparent motion can be induced when visual stimuli are successively presented at different locations. It has been shown in previous studies that motion-sensitive regions in extrastriate cortex are relevant for the processing of apparent motion, but it is unclear whether primary visual cortex (V1) is also involved in the representation of the illusory motion path. We investigated, in human subjects, apparent-motion-related activity in patches of V1 representing locations along the path of illusory stimulus motion using functional magnetic resonance imaging. Here we show that apparent motion caused a blood-oxygenation-level-dependent response along the V1 representations of the apparent-motion path, including regions that were not directly activated by the apparent-motion-inducing stimuli. This response was unaltered when participants had to perform an attention-demanding task that diverted their attention away from the stimulus. With a bistable motion quartet, we confirmed that the activity was related to the conscious perception of movement. Our data suggest that V1 is part of the network that represents the illusory path of apparent motion. The activation in V1 can be explained either by lateral interactions within V1 or by feedback mechanisms from higher visual areas, especially the motion-sensitive human MT/V5 complex
Reading the mind's eye: Decoding category information during mental imagery
Category information for visually presented objects can be read out from multi-voxel patterns of fMRI activity in ventral–temporal cortex. What is the nature and reliability of these patterns in the absence of any bottom–up visual input, for example, during visual imagery? Here, we first ask how well category information can be decoded for imagined objects and then compare the representations evoked during imagery and actual viewing. In an fMRI study, four object categories (food, tools, faces, buildings) were either visually presented to subjects, or imagined by them. Using pattern classification techniques, we could reliably decode category information (including for non-special categories, i.e., food and tools) from ventral–temporal cortex in both conditions, but only during actual viewing from retinotopic areas. Interestingly, in temporal cortex when the classifier was trained on the viewed condition and tested on the imagery condition, or vice versa, classification performance was comparable to within the imagery condition. The above results held even when we did not use information in the specialized category-selective areas. Thus, the patterns of representation during imagery and actual viewing are in fact surprisingly similar to each other. Consistent with this observation, the maps of “diagnostic voxels” (i.e., the classifier weights) for the perception and imagery classifiers were more similar in ventral–temporal cortex than in retinotopic cortex. These results suggest that in the absence of any bottom–up input, cortical back projections can selectively re-activate specific patterns of neural activity
Confucian Principles: A Study of Chinese Americans’ Interpersonal Relationships in Selected Children’s Picturebooks
[[abstract]]There has not been enough critical analysis of children’s literature by and about Chinese Americans, especially when compared to other minority groups in the United States. In particular, Chinese American historical books lack extensive analysis. It is important to reflect cultural accuracy in literature and to help children develop clear concepts of self and others by providing precise cultural and physical characteristics of people. While cultural authenticity allows children the opportunity to see a reflection of real experiences within a book instead of seeing stereotypes or misrepresentations, obtaining correct information about a certain time period can help children to see images of immigration accurately represented in literature. Using the Confucian delineation of interpersonal relationships as the major criterion of cultural authenticity, this article examines three currently available children’s picturebooks set in the historical period between 1848 and 1885. In addition to exploring how Chinese Americans’ interpersonal relationships are portrayed in these children’s historical books, this article argues for more proactive inclusion of the diversity in selection of picturebooks.[[notice]]補正完
- …
