187 research outputs found

    Molecular profiling of cutaneous squamous cell carcinoma

    Get PDF
    PhDCutaneous squamous cell carcinoma (cSCC) is the second most common form of non-melanoma skin cancer and accounts for the majority of deaths from this disease. Its incidence is increasing rapidly, contributing significant morbidity to patients and a burden on healthcare resources. The molecular events underlying cSCC development remain largely uncharacterised, despite the well established role of ultraviolet radiation as a principal carcinogen. Genomewide analyses of the genetic changes underlying cSCC development have shown they are subject to large chromosomal aberrations, which often involve whole chromosome arms. Many of these events occur in a high proportion of tumours, yet the genes they target are unknown. In this study, genomewide expression microarray data has been obtained from a series of cSCC and integrated with single nucleotide polymorphism (SNP) microarray data, to provide a comprehensive analysis of the events associated with tumour development. In total, 222 genes were identified as differentially expressed in cSCC, of which, 21% were concordant with copy number changes. Previous genomewide SNP data of cSCC had identified microdeletions within the PTPRD gene in a subset of tumours (Purdie et al., 2009). This was investigated in further detail and revealed microdeletions in this gene were significantly associated with metastatic cSCC. Sequencing analysis showed 37% of cSCC had a mutation at this locus, which suggests PTPRD is aberrant in a significant proportion of tumours. Decreased expression levels of PTPRD were correspondingly found in moderately and poorly differentiated tumours. The role of PTPRD in skin biology is not known and further functional work is required to elucidate its role in skin cancer. Taken together, these data provide a valuable insight into the genetic background against which cSCC develop. Furthermore, the association of PTPRD disruption with aggressive tumours may potentially be of future benefit as a prognostic biomarker and therapeutic target

    Large-scale structure of brown rat (Rattus norvegicus) populations in England: effects on rodenticide resistance

    Get PDF
    The brown rat (Rattus norvegicus) is a relatively recent (<300 years) addition to the British fauna, but by association with negative impacts on public health, animal health and agriculture, it is regarded as one of the most important vertebrate pest species. Anticoagulant rodenticides were introduced for brown rat control in the 1950s and are widely used for rat control in the UK, but long-standing resistance has been linked to control failures in some regions. One thus far ignored aspect of resistance biology is the population structure of the brown rat. This paper investigates the role population structure has on the development of anticoagulant resistance. Using mitochondrial and microsatellite DNA, we examined 186 individuals (from 15 counties in England and one location in Wales near the Wales–England border) to investigate the population structure of rural brown rat populations. We also examined individual rats for variations of the VKORC1 gene previously associated with resistance to anticoagulant rodenticides. We show that the populations were structured to some degree, but that this was only apparent in the microsatellite data and not the mtDNA data. We discuss various reasons why this is the case. We show that the population as a whole appears not to be at equilibrium. The relative lack of diversity in the mtDNA sequences examined can be explained by founder effects and a subsequent spatial expansion of a species introduced to the UK relatively recently. We found there was a geographical distribution of resistance mutations, and relatively low rate of gene flow between populations, which has implications for the development and management of anticoagulant resistance

    Oral versus inhaled antibiotics for bronchiectasis

    Get PDF
    Background Bronchiectasis is a chronic inflammatory disease characterised by a recurrent cycle of respiratory bacterial infections associated with cough, sputum production and impaired quality of life. Antibiotics are the main therapeutic option for managing bronchiectasis exacerbations. Evidence suggests that inhaled antibiotics may be associated with more effective eradication of infective organisms and a lower risk of developing antibiotic resistance when compared with orally administered antibiotics. However, it is currently unclear whether antibiotics are more effective when administered orally or by inhalation. Objectives To determine the comparative efficacy and safety of oral versus inhaled antibiotics in the treatment of adults and children with bronchiectasis. Search methods We identified studies through searches of the Cochrane Airways Group’s Specialised Register (CAGR), which is maintained by the Information Specialist for the group. The Register contains trial reports identified through systematic searches of bibliographic databases including the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, AMED, and PsycINFO, and handsearching of respiratory journals and meeting abstracts. We also searched ClinicalTrials.gov and the WHO trials portal. We searched all databases in March 2018 and imposed no restrictions on language of publication. Selection criteria We planned to include studies which compared oral antibiotics with inhaled antibiotics. We would have considered short-term use (less than four weeks) for treating acute exacerbations separately from longer-term use as a prophylactic (4 weeks or more). We would have considered both intraclass and interclass comparisons. We planned to exclude studies if the participants received continuous or high-dose antibiotics immediately before the start of the trial, or if they have received a diagnosis of cystic fibrosis (CF), sarcoidosis, active allergic bronchopulmonary aspergillosis or active non-tuberculous Mycobacterial infection. Data collection and analysis Two review authors independently applied study inclusion criteria to the searches and we planned for two authors to independently extract data, assess risk of bias and assess overall quality of the evidence using GRADE criteria. We also planned to obtain missing data from the authors where possible and to report results with 95% confidence intervals (CIs). Main results We identified 313 unique records through database searches and a further 21 records from trial registers. We excluded 307 on the basis of title and abstract alone and a further 27 after examining full-text reports. No studies were identified for inclusion in the review. Authors’ conclusions There is currently no evidence indicating whether orally administered antibiotics are more beneficial compared to inhaled antibiotics. The recent ERS bronchiectasis guidelines provide a practical approach to the use of long-term antibiotics. New research is needed comparing inhaled versus oral antibiotic therapies for bronchiectasis patients with a history of frequent exacerbations, to establish which approach is the most effective in terms of exacerbation prevention, quality of life, treatment burden, and antibiotic resistance

    Macrolide antibiotics for bronchiectasis

    Get PDF
    Background Bronchiectasis is a chronic respiratory disease characterised by abnormal and irreversible dilatation and distortion of the smaller airways. Bacterial colonisation of the damaged airways leads to chronic cough and sputum production, often with breathlessness and further structural damage to the airways. Long-term macrolide antibiotic therapy may suppress bacterial infection and reduce inflammation, leading to fewer exacerbations, fewer symptoms, improved lung function, and improved quality of life. Further evidence is required on the efficacy of macrolides in terms of specific bacterial eradication and the extent of antibiotic resistance. Objectives To determine the impact of macrolide antibiotics in the treatment of adults and children with bronchiectasis. Search methods We identified trials from the Cochrane Airways Trials Register, which contains studies identified through multiple electronic searches and handsearches of other sources. We also searched trial registries and reference lists of primary studies. We conducted all searches on 18 January 2018. Selection criteria We included randomised controlled trials (RCTs) of at least four weeks' duration that compared macrolide antibiotics with placebo or no intervention for the long-term management of stable bronchiectasis in adults or children with a diagnosis of bronchiectasis by bronchography, plain film chest radiograph, or high-resolution computed tomography. We excluded studies in which participants had received continuous or high-dose antibiotics immediately before enrolment or before a diagnosis of cystic fibrosis, sarcoidosis, or allergic bronchopulmonary aspergillosis. Our primary outcomes were exacerbation, hospitalisation, and serious adverse events. Data collection and analysis Two review authors independently screened the titles and abstracts of 103 records. We independently screened the full text of 40 study reports and included 15 trials from 30 reports. Two review authors independently extracted outcome data and assessed risk of bias for each study. We analysed dichotomous data as odds ratios (ORs) and continuous data as mean differences (MDs) or standardised mean differences (SMDs). We used standard methodological procedures as expected by Cochrane. Main results We included 14 parallel-group RCTs and one cross-over RCT with interventions lasting from 8 weeks to 24 months. Of 11 adult studies with 690 participants, six used azithromycin, four roxithromycin, and one erythromycin. Four studies with 190 children used either azithromycin, clarithromycin, erythromycin, or roxithromycin. We included nine adult studies in our comparison between macrolides and placebo and two in our comparison with no intervention. We included one study with children in our comparison between macrolides and placebo and one in our comparison with no intervention. In adults, macrolides reduced exacerbation frequency to a greater extent than placebo (OR 0.34, 95% confidence interval (CI) 0.22 to 0.54; 341 participants; three studies; I2 = 65%; moderate-quality evidence). This translates to a number needed to treat for an additional beneficial outcome of 4 (95% CI 3 to 8). Data show no differences in exacerbation frequency between use of macrolides (OR 0.31, 95% CI 0.08 to 1.15; 43 participants; one study; moderate-quality evidence) and no intervention. Macrolides were also associated with a significantly better quality of life compared with placebo (MD -8.90, 95% CI -13.13 to -4.67; 68 participants; one study; moderate-quality evidence). We found no evidence of a reduction in hospitalisations (OR 0.56, 95% CI 0.19 to 1.62; 151 participants; two studies; I2 = 0%; low-quality evidence), in the number of participants with serious adverse events, including pneumonia, respiratory and non-respiratory infections, haemoptysis, and gastroenteritis (OR 0.49, 95% CI 0.20 to 1.23; 326 participants; three studies; I2 = 0%; low-quality evidence), or in the number experiencing adverse events (OR 0.83, 95% CI 0.51 to 1.35; 435 participants; five studies; I2 = 28%) in adults with macrolides compared with placebo. In children, there were no differences in exacerbation frequency (OR 0.40, 95% CI 0.11 to 1.41; 89 children; one study; low-quality evidence); hospitalisations (OR 0.28, 95% CI 0.07 to 1.11; 89 children; one study; low-quality evidence), serious adverse events, defined within the study as exacerbations of bronchiectasis or investigations related to bronchiectasis (OR 0.43, 95% CI 0.17 to 1.05; 89 children; one study; low-quality evidence), or adverse events (OR 0.78, 95% CI 0.33 to 1.83; 89 children; one study), in those receiving macrolides compared to placebo. The same study reported an increase in macrolide-resistant bacteria (OR 7.13, 95% CI 2.13 to 23.79; 89 children; one study), an increase in resistance to Streptococcus pneumoniae (OR 13.20, 95% CI 1.61 to 108.19; 89 children; one study), and an increase in resistance to Staphylococcus aureus (OR 4.16, 95% CI 1.06 to 16.32; 89 children; one study) with macrolides compared with placebo. Quality of life was not reported in the studies with children. Authors' conclusions Long-term macrolide therapy may reduce the frequency of exacerbations and improve quality of life, although supporting evidence is derived mainly from studies of azithromycin, rather than other macrolides, and predominantly among adults rather than children. However, macrolides should be used with caution, as limited data indicate an associated increase in microbial resistance. Macrolides are associated with increased risk of cardiovascular death and other serious adverse events in other populations, and available data cannot exclude a similar risk among patients with bronchiectasis

    Head-to-head trials of antibiotics for bronchiectasis

    Get PDF
    Background The diagnosis of bronchiectasis is defined by abnormal dilation of the airways related to a pathological mechanism of progressive airway destruction that is due to a 'vicious cycle' of recurrent bacterial infection, inflammatory mediator release, airway damage, and subsequent further infection. Antibiotics are the main treatment option for reducing bacterial burden in people with exacerbations of bronchiectasis and for longer‐term eradication, but their use is tempered against potential adverse effects and concerns regarding antibiotic resistance. The comparative effectiveness, cost‐effectiveness, and safety of different antibiotics have been highlighted as important issues, but currently little evidence is available to help resolve uncertainty on these questions. Objectives To evaluate the comparative effects of different antibiotics in the treatment of adults and children with bronchiectasis. Search methods We identified randomised controlled trials (RCTs) through searches of the Cochrane Airways Group Register of trials and online trials registries, run 30 April 2018. We augmented these with searches of the reference lists of published studies. Selection criteria We included RCTs reported as full‐text articles, those published as abstracts only, and unpublished data. We included adults and children (younger than 18 years) with a diagnosis of bronchiectasis by bronchography or high‐resolution computed tomography who reported daily signs and symptoms, such as cough, sputum production, or haemoptysis, and those with recurrent episodes of chest infection; we included studies that compared one antibiotic versus another when they were administered by the same delivery method. Data collection and analysis Two review authors independently assessed trial selection, data extraction, and risk of bias. We assessed overall quality of the evidence using GRADE criteria. We made efforts to collect missing data from trial authors. We have presented results with their 95% confidence intervals (CIs) as mean differences (MDs) or odds ratios (ORs). Main results Four randomised trials were eligible for inclusion in this systematic review ‐ two studies with 83 adults comparing fluoroquinolones with ÎČ‐lactams and two studies with 55 adults comparing aminoglycosides with polymyxins. None of the included studies reported information on exacerbations ‐ one of our primary outcomes. Included studies reported no serious adverse events ‐ another of our primary outcomes ‐ and no deaths. We graded this evidence as low or very low quality. Included studies did not report quality of life. Comparison between fluoroquinolones and ÎČ‐lactams (amoxicillin) showed fewer treatment failures in the fluoroquinolone group than in the amoxicillin group (OR 0.07, 95% CI 0.01 to 0.32; low‐quality evidence) after 7 to 10 days of therapy. Researchers reported that Pseudomonas aeruginosa infection was eradicated in more participants treated with fluoroquinolones (Peto OR 20.09, 95% CI 2.83 to 142.59; low‐quality evidence) but provided no evidence of differences in the numbers of participants showing improvement in sputum purulence (OR 2.35, 95% CI 0.96 to 5.72; very low‐quality evidence). Study authors presented no evidence of benefit in relation to forced expiratory volume in one second (FEV₁). The two studies that compared polymyxins versus aminoglycosides described no clear differences between groups in the proportion of participants with P aeruginosa eradication (OR 1.40. 95% CI 0.36 to 5.35; very low‐quality evidence) or improvement in sputum purulence (OR 0.16, 95% CI 0.01 to 3.85; very low‐quality evidence). The evidence for changes in FEV₁ was inconclusive. Two of three trials reported adverse events but did not report the proportion of participants experiencing one or more adverse events, so we were unable to interpret the information. Authors' conclusions Limited low‐quality evidence favours short‐term oral fluoroquinolones over beta‐lactam antibiotics for patients hospitalised with exacerbations. Very low‐quality evidence suggests no benefit from inhaled aminoglycosides verus polymyxins. RCTs have presented no evidence comparing other modes of delivery for each of these comparisons, and no RCTs have included children. Overall, current evidence from a limited number of head‐to‐head trials in adults or children with bronchiectasis is insufficient to guide the selection of antibiotics for short‐term or long‐term therapy. More research on this topic is needed

    Macrolide antibiotics for non-cystic fibrosis bronchiectasis

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To determine the impact of macrolide antibiotics in the treatment of adults and children with non-cystic fibrosis bronchiectasis

    Evidence for new targets and synergistic effect of metronomic celecoxib/fluvastatin combination in pilocytic astrocytoma.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Pilocytic astrocytomas occur predominantly in childhood. In contrast to the posterior fossa location, hypothalamo-chiasmatic pilocytic astrocytomas display a worse prognosis often leading to multiple surgical procedures and/or several lines of chemotherapy and radiotherapy to achieve long-term control. Hypothalamo-chiasmatic pilocytic astrocytomas and cerebellar pilocytic astrocytomas have a distinctive gene signature and several differential expressed genes (ICAM1, CRK, CD36, and IQGAP1) are targets for available drugs: fluvastatin and/or celecoxib. RESULTS: Quantification by RT-Q-PCR of the expression of these genes was performed in a series of 51 pilocytic astrocytomas and 10 glioblastomas: they were all significantly overexpressed in hypothalamo-chiasmatic pilocytic astrocytomas relative to cerebellar pilocytic astrocytomas, and CRK and ICAM1 were significantly overexpressed in pilocytic astrocytomas versus glioblastomas.We used two commercially available glioblastoma cell lines and three pilocytic astrocytoma explant cultures to investigate the effect of celecoxib/fluvastatin alone or in combination. Glioblastoma cell lines were sensitive to both drugs and a combination of 100 ΌM celecoxib and 240 ΌM fluvastatin was the most synergistic. This synergistic combination was used on the explant cultures and led to massive cell death of pilocytic astrocytoma cells.As a proof of concept, a patient with a refractory multifocal pilocytic astrocytoma was successfully treated with the fluvastatin/celecoxib combination used for 18 months. It was well tolerated and led to a partial tumor response. CONCLUSION: This study reports evidence for new targets and synergistic effect of celecoxib/fluvastatin combination in pilocytic astrocytoma. Because it is non-toxic, this new strategy offers hope for the treatment of patients with refractory pilocytic astrocytoma
    • 

    corecore