2,302 research outputs found

    Quantum disordered phase on the frustrated honeycomb lattice

    Get PDF
    In the present paper we study the phase diagram of the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third neighbors along the line J2=J3J_2=J_3 that include the point J2=J3=J1/2J_2=J_3=J_1/2, corresponding to the highly frustrated point where the classical ground state has macroscopic degeneracy. Using the Linear Spin-Wave, Schwinger boson technique followed by a mean field decoupling and exact diagonalization for small systems we find an intermediate phase with a spin gap and short range N\'eel correlations in the strong quantum limit (S=1/2). All techniques provide consistent results which allow us to predict the existence of a quantum disordered phase, which may have been observed in recent high-field ESR measurements in manganites.Comment: 4 figure

    Statistical transmutation in doped quantum dimer models

    Get PDF
    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e. bosonic into fermionic or vice-versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables to define duality equivalence between doped quantum dimer Hamiltonians, and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model, with special focus on the topological Z2 dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity and fermionic phases is investigated in the four families.Comment: 3 figure

    Anharmonic effects in magnetoelastic chains

    Get PDF
    We describe a new mechanism leading to the formation of rational magnetization plateau phases, which is mainly due to the anharmonic spin-phonon coupling. This anharmonicity produces plateaux in the magnetization curve at unexpected values of the magnetization without explicit magnetic frustration in the Hamiltonian and without an explicit breaking of the translational symmetry. These plateau phases are accompanied by magneto-elastic deformations which are not present in the harmonic case.Comment: 5 pages, 3 figure

    Design of the Target Dump Injection Segmented (TDIS) in the framework of the High Luminosity Large Hadron Collider (HL-LHC) project

    Get PDF
    The High Luminosity Large Hadron Collider (HL-LHC) Project at CERN calls for increasing beam brightness and intensity. In this scenario, most equipment has to be redesigned and rebuilt. In particular, beam intercepting devices (such as dumps, collimators, absorbers and scrapers) have to withstand impact or scraping of the new intense HL-LHC beams without failure. Furthermore, minimizing the electromagnetic beam-device interactions is also a key design driver since they can lead to beam instabilities and excessive thermo-mechanical loading of devices. In this context, the present study assesses the conceptual design quality of the new LHC injection protection absorber, the Target Dump Injection Segmented (TDIS), from an electromagnetic and thermo-mechanical perspective. This contribution analyzes the thermo-mechanical response of the device considering two cases: an accidental beam impact scenario and another accidental scenario with complete failure of the RFcontacts. In addition, this paper presents the preliminary results from the simulation of the energy deposited by the two counter-rotating beams circulating in the device

    Diagnosing order by disorder in quantum spin systems

    Get PDF
    In this paper we study the frustrated J1-J2 quantum Heisenberg model on the square lattice for J2 > 2J1, in a magnetic field. In this regime the classical system is known to have a degenerate manifold of lowest energy configurations, where standard thermal order by disorder occurs. In order to study its quantum version we use a path integral formulation in terms of coherent states. We show that the classical degeneracy in the plane transverse to the magnetic field is lifted by quantum fluctuations. Collinear states are then selected, in a similar pattern to that set by thermal order by disorder, leaving a Z2 degeneracy. A careful analysis reveals a purely quantum mechanical effect given by the tunneling between the two minima selected by fluctuations. The effective description contains two planar (XY -like) fields conjugate to the total magnetization and the difference of the two sublattice magnetizations. Disorder in either or both of these fields produces the locking of their conjugate observables. Furthermore, within this scenario we argue that the quantum state is close to a product state.Comment: 8 pages, 3 figure

    Structural studies of mesoporous ZrO2_{2}-CeO2_{2} and ZrO2_{2}-CeO2_{2}/SiO2_{2} mixed oxides for catalytical applications

    Full text link
    In this work the synthesis of ZrO2_{2}-CeO2_{2} and ZrO2_{2}-CeO2_{2}/SiO2_{2} were developed, based on the process to form ordered mesoporous materials such as SBA-15 silica. The triblock copolymer Pluronic P-123 was used as template, aiming to obtain crystalline single phase walls and larger specific surface area, for future applications in catalysis. SAXS and XRD results showed a relationship between ordered pores and the material crystallization. 90% of CeO2_{2} leaded to single phase homogeneous ceria-zirconia solid solution of cubic fluorite structure (Fm3ˉ\bar{3}m). The SiO2_{2} addition improved structural and textural properties as well as the reduction behavior at lower temperatures, investigated by XANES measurements under H2_{2} atmosphere

    Experimental violation of a spin-1 Bell inequality using maximally-entangled four-photon states

    Get PDF
    We demonstrate the first experimental violation of a spin-1 Bell inequality. The spin-1 inequality is a calculation based on the Clauser, Horne, Shimony and Holt formalism. For entangled spin-1 particles the maximum quantum mechanical prediction is 2.552 as opposed to a maximum of 2, predicted using local hidden variables. We obtained an experimental value of 2.27 ±0.02\pm 0.02 using the four-photon state generated by pulsed, type-II, stimulated parametric down-conversion. This is a violation of the spin-1 Bell inequality by more than 13 standard deviations.Comment: 5 pages, 3 figures, Revtex4. Problem with figures resolve

    Generalized Pomeranchuk instabilities in graphene

    Get PDF
    We study the presence of Pomeranchuk instabilities induced by interactions on a Fermi liquid description of a graphene layer. Using a recently developed generalization of Pomeranchuk method we present a phase diagram in the space of fillings versus on-site and nearest neighbors interactions. Interestingly, we find that for both interactions being repulsive an instability region exists near the Van Hove filling, in agreement with earlier theoretical work. In contrast, near half filling, the Fermi liquid behavior appears to be stable, in agreement with theoretical results and experimental findings using ARPES. The method allows for a description of the complete phase diagram for arbitrary filling.Comment: 9 pages, 3 figure
    • …
    corecore