42,727 research outputs found

    Performance of T-shape barriers with top surface covered with absorptive quadratic residue diffusers

    Get PDF
    A previous paper [Applied Acoustics 66 (2005) 709–730] has shown that adding a quadratic residue diffuser (QRD) to the top of a T-shape barrier can provide better barrier performance than an equivalent purely absorptive barrier. In here, we extend the study to look at the performance when a QRD is made absorptive. This paper presents an investigation on the acoustic performance of a few welled-diffusers with different absorption ability on top of a T-shape noise barrier. The absorption properties of the diffusers are modified with different sequences, by filling the wells with fiberglass, by covering the well entrance with wire meshes, and by putting perforated sheet either on the top surface or inside the wells. A 2D Boundary Element Method (BEM) is used to calculate the barrier insertion loss. The numerical and experimental results on diffuser barriers with rigid and absorptive covers are compared. Among the tested models the best method of treating diffuser barriers with absorbent agents in the QRD is found to be a perorated sheet on top or inside the diffuser wells. It is found that increasing the absorption ability of QRD by fiberglass or high resistance wire meshes has negative effect on the efficiency of a QRD barrier. It is shown that, if the increase in absorption destroys the effect of resonance in wells, it will also have negative effect on the insertion loss performance of the QRD edge barrier. © Elsevier Ltd. All rights reserved

    On the modeling of sound propagation over multi-impedance discontinuities using a semiempirical diffraction formulation

    Get PDF
    Several approximate extensions of the semi-empirical De Jong model [ De Jong et al., J. Sound and Vib. 86, 23–46 (1983) ] are considered for the prediction of sound propagation over multiple impedance discontinuities. A limitation in the original formulation of the De Jong model is highlighted and a modified form that overcomes this limitation is derived based on reciprocity. This leads to the development of a model for multiple impedance discontinuities that can be used for the investigation of sound-wave propagation above a mixed, striped soft ground that is created by either porous absorbent strips, embedded grooves, or wells with different depths. The accuracy of the model is validated against the boundary element method. It is then used to evaluate the importance of the imaginary part of the admittance of the ground strips on sound attenuation along welled surface. It is shown that the attenuation performance of a surface with multiple impedance discontinuities is high when the imaginary part of the average admittance is large and negative (with an −iωt convention), but the magnitudes of the attenuation peaks are also substantially affected by diffraction from the impedance discontinuities. © 2006 Acoustical Society of Americ

    Performance of profiled single noise barriers covered with quadratic residue diffusers

    Get PDF
    The paper describes an investigation about the acoustic performance of noise barriers with quadratic residue diffuser (QRD) tops, and with T-, Arrow-, Cylindrical and Y-shape profiles. A 2D boundary element method (BEM) is used to calculate the barrier insertion loss. The results of rigid and with absorptive coverage are also calculated for comparisons. Using QRD on the top surface of almost all barrier models presented here is found to improve the efficiency of barriers compare with using absorptive coverage at the examined receiver positions. T-shape and Arrow-shape barriers are also found to provide better performance than other shapes of barriers. The best shape of barriers for utilising QRD among the tested models is the T-shape profile barrier. It is found that reducing the design frequency of QRD shifts the performance improvement towards lower frequency, and therefore the most efficient model for traffic noise is a barrier covered with a QRD tuned to around 400 Hz. Š Elsevier Ltd. All rights reserved

    What if θ13\theta_{13} Is Small?

    Full text link
    In the basis where the charged lepton mass matrix is diagonal, the left-handed neutrino mass matrix is invariant under the permutation of the second and third generations if, and only if, the reactor angle θ13\theta_{13} is zero and the atmospheric mixing angle θ23\theta_{23} is maximal. In the presence of the seesaw mechanism, this symmetry leads to an inverted hierarchy, with m3=0m_3=0. This inverted mass spectrum is doubly protected if the right-handed neutrinos also have a 2-3 symmetry

    Behaviour of concrete filled stainless steel elliptical hollow sections

    Get PDF
    This paper presents the behaviour and design of axially loaded concrete filled stainless steel elliptical hollow sections. The experimental investigation was conducted using normal and high strength concrete of 30 and 100 MPa. The current study is based on stub column tests and is therefore limited to cross-section capacity. Based on the existing design guidance in Eurocode 4 for composite columns, the proposed design equations use the continuous strength method to determine the strength of the stainless steel material. It is found to provide the most accurate and consistent prediction of the axial capacity of the composite concrete filled stainless steel elliptical hollow sections due largely to the more precise assessment of the contribution of the stainless steel tube to the composite resistance

    Fast kinetic Monte Carlo simulation of strained heteroepitaxy in three dimensions

    Full text link
    Accelerated algorithms for simulating the morphological evolution of strained heteroeptiaxy based on a ball and spring lattice model in three dimensions are explained. We derive exact Green's function formalisms for boundary values in the associated lattice elasticity problems. The computational efficiency is further enhanced by using a superparticle surface coarsening approximation. Atomic hoppings simulating surface diffusion are sampled using a multi-step acceptance-rejection algorithm. It utilizes quick estimates of the atomic elastic energies from extensively tabulated values modulated by the local strain. A parameter controls the compromise between accuracy and efficiency of the acceptance-rejection algorithm.Comment: 10 pages, 4 figures, submitted to Proceedings of Barrett Lectures 2007, Journal of Scientific Computin

    Examining and improving the effectiveness of relevance feedback for retrieval of scanned text documents

    Get PDF
    Important legacy paper documents are digitized and collected in online accessible archives. This enables the preservation, sharing, and significantly the searching of these documents. The text contents of these document images can be transcribed automatically using OCR systems and then stored in an information retrieval system. However, OCR systems make errors in character recognition which have previously been shown to impact on document retrieval behaviour. In particular relevance feedback query-expansion methods, which are often effective for improving electronic text retrieval, are observed to be less reliable for retrieval of scanned document images. Our experimental examination of the effects of character recognition errors on an ad hoc OCR retrieval task demonstrates that, while baseline information retrieval can remain relatively unaffected by transcription errors, relevance feedback via query expansion becomes highly unstable. This paper examines the reason for this behaviour, and introduces novel modifications to standard relevance feedback methods. These methods are shown experimentally to improve the effectiveness of relevance feedback for errorful OCR transcriptions. The new methods combine similar recognised character strings based on term collection frequency and a string edit-distance measure. The techniques are domain independent and make no use of external resources such as dictionaries or training data
    • …
    corecore