21,482 research outputs found
Configurable unitary transformations and linear logic gates using quantum memories
We show that a set of optical memories can act as a configurable linear
optical network operating on frequency-multiplexed optical states. Our protocol
is applicable to any quantum memories that employ off-resonant Raman
transitions to store optical information in atomic spins. In addition to the
configurability, the protocol also offers favourable scaling with an increasing
number of modes where N memories can be configured to implement an arbitrary
N-mode unitary operations during storage and readout. We demonstrate the
versatility of this protocol by showing an example where cascaded memories are
used to implement a conditional CZ gate.Comment: 5 pages, 2 figure
Magnetic Trapping of Cold Bromine Atoms
Magnetic trapping of bromine atoms at temperatures in the milliKelvin regime
is demonstrated for the first time. The atoms are produced by photodissociation
of Br molecules in a molecular beam. The lab-frame velocity of Br atoms is
controlled by the wavelength and polarization of the photodissociation laser.
Careful selection of the wavelength results in one of the pair of atoms having
sufficient velocity to exactly cancel that of the parent molecule, and it
remains stationary in the lab frame. A trap is formed at the null point between
two opposing neodymium permanent magnets. Dissociation of molecules at the
field minimum results in the slowest fraction of photofragments remaining
trapped. After the ballistic escape of the fastest atoms, the trapped slow
atoms are only lost by elastic collisions with the chamber background gas. The
measured loss rate is consistent with estimates of the total cross section for
only those collisions transferring sufficient kinetic energy to overcome the
trapping potential
Secondary pattern computation of an arbitrarily shaped main reflector
The secondary pattern of a perfectly conducting offset main reflector being illuminated by a point feed at an arbitrary location was studied. The method of analysis is based upon the application of the Fast Fourier Transform (FFT) to the aperture fields obtained using geometrical optics (GO) and geometrical theory of diffraction (GTD). Key features of the reflector surface is completely arbitrary, the incident field from the feed is most general with arbitrary polarization and location, and the edge diffraction is calculated by either UAT or by UTD. Comparison of this technique for an offset parabolic reflector with the Jacobi-Bessel and Fourier-Bessel techniques shows good agreement. Near field, far field, and scan data of a large reflector are presented
Gaussian Post-selection for Continuous Variable Quantum Cryptography
We extend the security proof for continuous variable quantum key distribution
protocols using post selection to account for arbitrary eavesdropping attacks
by employing the concept of an equivalent protocol where the post-selection is
implemented as a series of quantum operations including a virtual distillation.
We introduce a particular `Gaussian' post selection and demonstrate that the
security can be calculated using only experimentally accessible quantities.
Finally we explicitly evaluate the performance for the case of a noisy Gaussian
channel in the limit of unbounded key length and find improvements over all
pre-existing continuous variable protocols in realistic regimes.Comment: 4+4 pages. arXiv admin note: substantial text overlap with
arXiv:1106.082
Recommended from our members
Early time dynamics of laser-ablated silicon using ultrafast grazing incidence X-ray scattering
Controlling the morphology of laser-derived nanomaterials is dependent on developing a better understanding of the particle nucleation dynamics in the ablation plume. Here, we utilize the femtosecond-length pulses from an x-ray free electron laser to perform time-resolved grazing incidence x-ray scattering measurements on a laser-produced silicon plasma plume. At 20 ps we observe a dramatic increase in the scattering amplitude at small scattering vectors, which we attribute to incipient formation of liquid silicon droplets. These results demonstrate the utility of XFELs as a tool for characterizing the formation dynamics of nanomaterials in laser-produced plasma plumes on ultrafast timescales
Generalized Background-Field Method
The graphical method discussed previously can be used to create new gauges
not reachable by the path-integral formalism. By this means a new gauge is
designed for more efficient two-loop QCD calculations. It is related to but
simpler than the ordinary background-field gauge, in that even the triple-gluon
vertices for internal lines contain only four terms, not the usual six. This
reduction simplifies the calculation inspite of the necessity to include other
vertices for compensation. Like the ordinary background-field gauge, this
generalized background-field gauge also preserves gauge invariance of the
external particles. As a check of the result and an illustration for the
reduction in labour, an explicit calculation of the two-loop QCD
-function is carried out in this new gauge. It results in a saving of
45% of computation compared to the ordinary background-field gauge.Comment: 17 pages, Latex, 18 figures in Postscrip
- …