23 research outputs found
Recommended from our members
High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris.
Cell membranes represent the "front line" of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a "tagless" process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein-protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms
Small-Bodied Humans from Palau, Micronesia
UNLABELLED: Newly discovered fossil assemblages of small bodied Homo sapiens from Palau, Micronesia possess characters thought to be taxonomically primitive for the genus Homo. BACKGROUND: Recent surface collection and test excavation in limestone caves in the rock islands of Palau, Micronesia, has produced a sizeable sample of human skeletal remains dating roughly between 940-2890 cal ybp. PRINCIPLE FINDINGS: Preliminary analysis indicates that this material is important for two reasons. First, individuals from the older time horizons are small in body size even relative to "pygmoid" populations from Southeast Asia and Indonesia, and thus may represent a marked case of human insular dwarfism. Second, while possessing a number of derived features that align them with Homo sapiens, the human remains from Palau also exhibit several skeletal traits that are considered to be primitive for the genus Homo. SIGNIFICANCE: These features may be previously unrecognized developmental correlates of small body size and, if so, they may have important implications for interpreting the taxonomic affinities of fossil specimens of Homo
World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions
BACKGROUND: To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. METHODS: In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. FINDINGS: Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. INTERPRETATION: We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. FUNDING: World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Recommended from our members
Large-Scale, Continuous-Flow Production of Stressed Biomass (Desulfovibrio vulgaris Hildenborough)
The Protein Complex Analysis Project (PCAP, http://pcap.lbl.gov/), focuses on high-throughput analysis of microbial protein complexes in the anaerobic, sulfate-reducing organism, DesulfovibriovulgarisHildenborough(DvH).Interest in DvHas a model organism for bioremediation of contaminated groundwater sites arises from its ability to reduce heavy metals. D. vulgarishas been isolated from contaminated groundwater of sites in the DOE complex. To understand the effect of environmental changes on the organism, midlog-phase cultures are exposed to nitrate and salt stresses (at the minimum inhibitory concentration, which reduces growth rates by 50percent), and compared to controls of cultures at midlogand stationary phases. Large volumes of culture of consistent quality (up to 100 liters) are needed because of the relatively low cell density of DvHcultures (one order of magnitude lower than E. coli, for example) and PCAP's challenge to characterize low-abundance membrane proteins. Cultures are grown in continuous flow stirred tank reactors (CFSTRs) to produce consistent cell densities. Stressor is added to the outflow from the CFSTR, and the mixture is pumped through a plug flow reactor (PFR), to provide a stress exposure time of 2 hours. Effluent is chilled and held in large carboys until it is centrifuged. A variety of analyses -- including metabolites, total proteins, cell density and phospholipidfatty-acids -- track culture consistency within a production run, and differences due to stress exposure and growth phase for the different conditions used. With our system we are able to produce the requisite 100 L of culture for a given condition within a week
Recommended from our members
High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris.
Cell membranes represent the "front line" of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a "tagless" process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein-protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms
Complications following pediatric cranioplasty after decompressive craniectomy: a multicenter retrospective study.
OBJECTIVE In children, the repair of skull defects arising from decompressive craniectomy presents a unique set of challenges. Single-center studies have identified different risk factors for the common complications of cranioplasty resorption and infection. The goal of the present study was to determine the risk factors for bone resorption and infection after pediatric cranioplasty. METHODS The authors conducted a multicenter retrospective case study that included all patients who underwent cranioplasty to correct a skull defect arising from a decompressive craniectomy at 13 centers between 2000 and 2011 and were less than 19 years old at the time of cranioplasty. Prior systematic review of the literature along with expert opinion guided the selection of variables to be collected. These included: indication for craniectomy; history of abusive head trauma; method of bone storage; method of bone fixation; use of drains; size of bone graft; presence of other implants, including ventriculoperitoneal (VP) shunt; presence of fluid collections; age at craniectomy; and time between craniectomy and cranioplasty. RESULTS A total of 359 patients met the inclusion criteria. The patients' mean age was 8.4 years, and 51.5% were female. Thirty-eight cases (10.5%) were complicated by infection. In multivariate analysis, presence of a cranial implant (primarily VP shunt) (OR 2.41, 95% CI 1.17-4.98), presence of gastrostomy (OR 2.44, 95% CI 1.03-5.79), and ventilator dependence (OR 8.45, 95% CI 1.10-65.08) were significant risk factors for cranioplasty infection. No other variable was associated with infection. Of the 240 patients who underwent a cranioplasty with bone graft, 21.7% showed bone resorption significant enough to warrant repeat surgical intervention. The most important predictor of cranioplasty bone resorption was age at the time of cranioplasty. For every month of increased age the risk of bone flap resorption decreased by 1% (OR 0.99, 95% CI 0.98-0.99, p < 0.001). Other risk factors for resorption in multivariate models were the use of external ventricular drains and lumbar shunts. CONCLUSIONS This is the largest study of pediatric cranioplasty outcomes performed to date. Analysis included variables found to be significant in previous retrospective reports. Presence of a cranial implant such as VP shunt is the most significant risk factor for cranioplasty infection, whereas younger age at cranioplasty is the dominant risk factor for bone resorption
Recommended from our members
Complications following pediatric cranioplasty after decompressive craniectomy: a multicenter retrospective study.
OBJECTIVE In children, the repair of skull defects arising from decompressive craniectomy presents a unique set of challenges. Single-center studies have identified different risk factors for the common complications of cranioplasty resorption and infection. The goal of the present study was to determine the risk factors for bone resorption and infection after pediatric cranioplasty. METHODS The authors conducted a multicenter retrospective case study that included all patients who underwent cranioplasty to correct a skull defect arising from a decompressive craniectomy at 13 centers between 2000 and 2011 and were less than 19 years old at the time of cranioplasty. Prior systematic review of the literature along with expert opinion guided the selection of variables to be collected. These included: indication for craniectomy; history of abusive head trauma; method of bone storage; method of bone fixation; use of drains; size of bone graft; presence of other implants, including ventriculoperitoneal (VP) shunt; presence of fluid collections; age at craniectomy; and time between craniectomy and cranioplasty. RESULTS A total of 359 patients met the inclusion criteria. The patients' mean age was 8.4 years, and 51.5% were female. Thirty-eight cases (10.5%) were complicated by infection. In multivariate analysis, presence of a cranial implant (primarily VP shunt) (OR 2.41, 95% CI 1.17-4.98), presence of gastrostomy (OR 2.44, 95% CI 1.03-5.79), and ventilator dependence (OR 8.45, 95% CI 1.10-65.08) were significant risk factors for cranioplasty infection. No other variable was associated with infection. Of the 240 patients who underwent a cranioplasty with bone graft, 21.7% showed bone resorption significant enough to warrant repeat surgical intervention. The most important predictor of cranioplasty bone resorption was age at the time of cranioplasty. For every month of increased age the risk of bone flap resorption decreased by 1% (OR 0.99, 95% CI 0.98-0.99, p < 0.001). Other risk factors for resorption in multivariate models were the use of external ventricular drains and lumbar shunts. CONCLUSIONS This is the largest study of pediatric cranioplasty outcomes performed to date. Analysis included variables found to be significant in previous retrospective reports. Presence of a cranial implant such as VP shunt is the most significant risk factor for cranioplasty infection, whereas younger age at cranioplasty is the dominant risk factor for bone resorption
Recommended from our members
Bacterial Interactomes: Interacting Protein Partners Share Similar Function and Are Validated in Independent Assays More Frequently Than Previously Reported.
Numerous affinity purification-mass spectrometry (AP-MS) and yeast two-hybrid screens have each defined thousands of pairwise protein-protein interactions (PPIs), most of which are between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here, we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial yeast two-hybrid and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli Compared with the nine published interactomes, our two networks are smaller, are much less highly connected, and have significantly lower false discovery rates. In addition, our interactomes are much more enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays than the pairs reported in prior studies. Our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested