71 research outputs found
Fractionation of aqueous isopropanol mixtures in a countercurrent packed column using supercritical CO2
Purification of isopropanol aqueous mixtures by supercritical CO2 was realized in the continuous mode using a packed column. The aim of the study was to experimentally and theoretically evaluate the separation performance of this packed contactor. Experiments were performed in a column of 2 m height and 17 mm diameter, in the range (10–20 MPa) and (40–60 °C) with a solvent to feed ratio varying from 4 to 11. Two types of packing, spring shape packing and metallic foam, were tested. The IPA composition of the feed was varied between 5% and 60% (w/w). The experimental results were compared to simulation of the process using the process simulation software Prosim Plus. The column modelling was based on the concept of theoretical equilibrium stages. Thermodynamic behaviour of the CO2–IPA–water system under pressure was represented on the whole range of conditions corresponding to the process, using the Soave–Redlich–Kwong equation of state (SRK) modified by Boston Mathias with PSRK mixing rules and UNIQUAC activity coefficient models. This model gave the best predictions, after the twelve interaction coefficients (four for each binary subsystem) were identified from the literature equilibrium experimental data. From the modelling, rather high values of the Height of a Theoretical Stage (HETS) were obtained (larger than 1 m) and these values were shown to diminish when the IPA feed composition was increased
High sensitivity refractometer based on reflective Smf-small diameter no core fiber structure
\ua9 2017 by the authors. Licensee MDPI, Basel, Switzerland. A high sensitivity refractive index sensor based on a single mode-small diameter no core fiber structure is proposed. In this structure, a small diameter no core fiber (SDNCF) used as a sensor probe, was fusion spliced to the end face of a traditional single mode fiber (SMF) and the end face of the SDNCF was coated with a thin film of gold to provide reflective light. The influence of SDNCF diameter and length on the refractive index sensitivity of the sensor has been investigated by both simulations and experiments, where results show that the diameter of SDNCF has significant influence. However, SDNCF length has limited influence on the sensitivity. Experimental results show that a sensitivity of 327 nm/RIU (refractive index unit) has been achieved for refractive indices ranging from 1.33 to 1.38, which agrees well with the simulated results with a sensitivity of 349.5 nm/RIU at refractive indices ranging from 1.33 to 1.38
A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards
<p>Abstract</p> <p>Background</p> <p>In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards.</p> <p>Results</p> <p>Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest.</p> <p>Conclusion</p> <p>The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.</p
Circulating tumour DNA is a promising biomarker for risk stratification of central chondrosarcoma with IDH1/2 and GNAS mutations.
Chondrosarcoma (CS) is a rare tumour type and the most common primary malignant bone cancer in adults. The prognosis, currently based on tumour grade, imaging and anatomical location, is not reliable and more objective biomarkers are required. We aimed to determine whether the level of circulating tumour DNA (ctDNA) in the blood of CS patients could be used to predict outcome. In this multi-institutional study, we recruited 145 patients with cartilaginous tumours, of which 41 were excluded. ctDNA levels were assessed in 83 of the remaining 104 patients, whose tumours harboured a hotspot mutation in IDH1/2 or GNAS. ctDNA was detected pre-operatively in 31/83 (37%) and in 12/31 (39%) patients post-operatively. We found that detection of ctDNA was more accurate than pathology for identification of high-grade tumours and was associated with a poor prognosis; ctDNA was never associated with CS grade 1/atypical cartilaginous tumours (ACT), which are neoplasms sited in the small bones of the hands and feet or in tumours measuring less than 80 mm. Although the results are promising, they are based on a small number of patients and therefore introduction of this blood test into clinical practice as a complementary assay to current standard-of-care protocols would allow the assay to be assessed more stringently and developed for a more personalised approach for the treatment of patients with CS
A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplification inhibition
<p>Abstract</p> <p>Background</p> <p>Real-time PCR analysis is a sensitive DNA quantification technique that has recently gained considerable attention in biotechnology, microbiology and molecular diagnostics. Although, the cycle-threshold (<it>Ct</it>) method is the present "gold standard", it is far from being a standard assay. Uniform reaction efficiency among samples is the most important assumption of this method. Nevertheless, some authors have reported that it may not be correct and a slight PCR efficiency decrease of about 4% could result in an error of up to 400% using the <it>Ct </it>method. This reaction efficiency decrease may be caused by inhibiting agents used during nucleic acid extraction or copurified from the biological sample.</p> <p>We propose a new method (<it>Cy</it><sub><it>0</it></sub>) that does not require the assumption of equal reaction efficiency between unknowns and standard curve.</p> <p>Results</p> <p>The <it>Cy</it><sub><it>0 </it></sub>method is based on the fit of Richards' equation to real-time PCR data by nonlinear regression in order to obtain the best fit estimators of reaction parameters. Subsequently, these parameters were used to calculate the <it>Cy</it><sub><it>0 </it></sub>value that minimizes the dependence of its value on PCR kinetic.</p> <p>The <it>Ct</it>, second derivative (<it>Cp</it>), sigmoidal curve fitting method (<it>SCF</it>) and <it>Cy</it><sub><it>0 </it></sub>methods were compared using two criteria: precision and accuracy. Our results demonstrated that, in optimal amplification conditions, these four methods are equally precise and accurate. However, when PCR efficiency was slightly decreased, diluting amplification mix quantity or adding a biological inhibitor such as IgG, the <it>SCF</it>, <it>Ct </it>and <it>Cp </it>methods were markedly impaired while the <it>Cy</it><sub><it>0 </it></sub>method gave significantly more accurate and precise results.</p> <p>Conclusion</p> <p>Our results demonstrate that <it>Cy</it><sub><it>0 </it></sub>represents a significant improvement over the standard methods for obtaining a reliable and precise nucleic acid quantification even in sub-optimal amplification conditions overcoming the underestimation caused by the presence of some PCR inhibitors.</p
The spine in Paget’s disease
Paget’s disease (PD) is a chronic metabolically active bone disease, characterized by a disturbance in bone modelling and remodelling due to an increase in osteoblastic and osteoclastic activity. The vertebra is the second most commonly affected site. This article reviews the various spinal pathomechanisms and osseous dynamics involved in producing the varied imaging appearances and their clinical relevance. Advanced imaging of osseous, articular and bone marrow manifestations of PD in all the vertebral components are presented. Pagetic changes often result in clinical symptoms including back pain, spinal stenosis and neural dysfunction. Various pathological complications due to PD involvement result in these clinical symptoms. Recognition of the imaging manifestations of spinal PD and the potential complications that cause the clinical symptoms enables accurate assessment of patients prior to appropriate management
Aging-Aware Request Scheduling for Non-Volatile Main Memory
Modern computing systems are embracing non-volatile memory (NVM) to implement
high-capacity and low-cost main memory. Elevated operating voltages of NVM
accelerate the aging of CMOS transistors in the peripheral circuitry of each
memory bank. Aggressive device scaling increases power density and temperature,
which further accelerates aging, challenging the reliable operation of
NVM-based main memory. We propose HEBE, an architectural technique to mitigate
the circuit aging-related problems of NVM-based main memory. HEBE is built on
three contributions. First, we propose a new analytical model that can
dynamically track the aging in the peripheral circuitry of each memory bank
based on the bank's utilization. Second, we develop an intelligent memory
request scheduler that exploits this aging model at run time to de-stress the
peripheral circuitry of a memory bank only when its aging exceeds a critical
threshold. Third, we introduce an isolation transistor to decouple parts of a
peripheral circuit operating at different voltages, allowing the decoupled
logic blocks to undergo long-latency de-stress operations independently and off
the critical path of memory read and write accesses, improving performance. We
evaluate HEBE with workloads from the SPEC CPU2017 Benchmark suite. Our results
show that HEBE significantly improves both performance and lifetime of
NVM-based main memory.Comment: To appear in ASP-DAC 202
A new MRI rating scale for progressive supranuclear palsy and multiple system atrophy: validity and reliability
AIM
To evaluate a standardised MRI acquisition protocol and a new image rating scale for disease severity in patients with progressive supranuclear palsy (PSP) and multiple systems atrophy (MSA) in a large multicentre study.
METHODS
The MRI protocol consisted of two-dimensional sagittal and axial T1, axial PD, and axial and coronal T2 weighted acquisitions. The 32 item ordinal scale evaluated abnormalities within the basal ganglia and posterior fossa, blind to diagnosis. Among 760 patients in the study population (PSP = 362, MSA = 398), 627 had per protocol images (PSP = 297, MSA = 330). Intra-rater (n = 60) and inter-rater (n = 555) reliability were assessed through Cohen's statistic, and scale structure through principal component analysis (PCA) (n = 441). Internal consistency and reliability were checked. Discriminant and predictive validity of extracted factors and total scores were tested for disease severity as per clinical diagnosis.
RESULTS
Intra-rater and inter-rater reliability were acceptable for 25 (78%) of the items scored (≥ 0.41). PCA revealed four meaningful clusters of covarying parameters (factor (F) F1: brainstem and cerebellum; F2: midbrain; F3: putamen; F4: other basal ganglia) with good to excellent internal consistency (Cronbach α 0.75-0.93) and moderate to excellent reliability (intraclass coefficient: F1: 0.92; F2: 0.79; F3: 0.71; F4: 0.49). The total score significantly discriminated for disease severity or diagnosis; factorial scores differentially discriminated for disease severity according to diagnosis (PSP: F1-F2; MSA: F2-F3). The total score was significantly related to survival in PSP (p<0.0007) or MSA (p<0.0005), indicating good predictive validity.
CONCLUSIONS
The scale is suitable for use in the context of multicentre studies and can reliably and consistently measure MRI abnormalities in PSP and MSA. Clinical Trial Registration Number The study protocol was filed in the open clinical trial registry (http://www.clinicaltrials.gov) with ID No NCT00211224
- …