561 research outputs found
Evaluation of leguminous vegetables as intercrops in pruned fields of jasmine (Jasminum sambac Ait.)
Investigations on intercropping of leguminous vegetables in a pruned field of jasmine (Jasminum sambac) carried out in a farmer's field at Keezakundalapadi (Cuddalore District, Tamil Nadu), indicated that intercropping pruned jasmine with double rows of vegetable cowpea (Vigna unguiculata) fetched the highest equivalent yield of jasmine (5,393 kg ha-I), land equivalent ratio (1.99), net returns (Rs. 1,44,113 ha-I) and benefit-cost ratio (3:1).
 
Computational systems biology approach for permanent tumor elimination and normal tissue protection using negative biasing: Experimental validation in malignant melanoma as case study
Complete spontaneous tumor regression (without treatment) is well documented to occur in animals and humans as epidemiological analysis show, whereby the malignancy is permanently eliminated. We have developed a novel computational systems biology model for this unique phenomenon to furnish insight into the possibility of therapeutically replicating such regression processes on tumors clinically, without toxic side effects. We have formulated oncological informatics approach using cell-kinetics coupled differential equations while protecting normal tissue. We investigated three main tumor-lysis components: (ⅰ) DNA blockade factors, (ⅱ) Interleukin-2 (IL-2), and (ⅲ) Cytotoxic T-cells (CD8+ T). We studied the temporal variations of these factors, utilizing preclinical experimental investigations on malignant tumors, using mammalian melanoma microarray and histiocytoma immunochemical assessment. We found that permanent tumor regression can occur by: 1) Negative-Bias shift in population trajectory of tumor cells, eradicating them under first-order asymptotic kinetics, and 2) Temporal alteration in the three antitumor components (DNA replication-blockade, Antitumor T-lymphocyte, IL-2), which are respectively characterized by the following patterns: (a) Unimodal Inverted-U function, (b) Bimodal M-function, (c) Stationary-step function. These provide a time-wise orchestrated tri-phasic cytotoxic profile. We have also elucidated gene-expression levels corresponding to the above three components: (ⅰ) DNA-damage G2/M checkpoint regulation [genes: CDC2-CHEK], (ⅱ) Chemokine signaling: IL-2/15 [genes: IL2RG-IKT3], (ⅲ) T-lymphocyte signaling (genes: TRGV5-CD28). All three components quantitatively followed the same activation profiles predicted by our computational model (Smirnov-Kolmogorov statistical test satisfied, α = 5%). We have shown that the genes CASP7-GZMB are signatures of Negative-bias dynamics, enabling eradication of the residual tumor. Using the negative-biasing principle, we have furnished the dose-time profile of equivalent therapeutic agents (DNA-alkylator, IL-2, T-cell input) so that melanoma tumor may therapeutically undergo permanent extinction by replicating the spontaneous tumor regression dynamics
Generation of a Compendium of Transcription Factor Cascades and Identification of Potential Therapeutic Targets using Graph Machine Learning
Transcription factors (TFs) play a vital role in the regulation of gene
expression thereby making them critical to many cellular processes. In this
study, we used graph machine learning methods to create a compendium of TF
cascades using data extracted from the STRING database. A TF cascade is a
sequence of TFs that regulate each other, forming a directed path in the TF
network. We constructed a knowledge graph of 81,488 unique TF cascades, with
the longest cascade consisting of 62 TFs. Our results highlight the complex and
intricate nature of TF interactions, where multiple TFs work together to
regulate gene expression. We also identified 10 TFs with the highest regulatory
influence based on centrality measurements, providing valuable information for
researchers interested in studying specific TFs. Furthermore, our pathway
enrichment analysis revealed significant enrichment of various pathways and
functional categories, including those involved in cancer and other diseases,
as well as those involved in development, differentiation, and cell signaling.
The enriched pathways identified in this study may have potential as targets
for therapeutic intervention in diseases associated with dysregulation of
transcription factors. We have released the dataset, knowledge graph, and
graphML methods for the TF cascades, and created a website to display the
results, which can be accessed by researchers interested in using this dataset.
Our study provides a valuable resource for understanding the complex network of
interactions between TFs and their regulatory roles in cellular processes
Application of Imaging Techniques to Determine the Post-Yield Behaviour of the Heterogeneous Microstructure of Friction Stir Welds
From Springer Nature via Jisc Publications RouterHistory: received 2020-09-05, accepted 2021-04-12, registration 2021-04-12, pub-electronic 2021-04-21, online 2021-04-21, pub-print 2021-07Publication status: PublishedAbstract: Background: Friction Stir Welding (FSW) causes intense plastic deformation and consequent thermomechanical interactions resulting in a localised heterogeneous microstructure. To understand the weld mechanical behaviour, it is necessary to identify each microstructural sub-region in the weld. Objective: Determine the relationship between the local microstructure and mechanical behaviour of the different microstructural regions in a FSW. Methods: Scanning electron microscopy (SEM) identified the microstructural sub-regions of an FSW joint. A novel High-Resolution Digital Image Correlation (HR-DIC) methodology enabled the determination of full-field strain response to provide the mechanical behaviour of the FSW sub-regions. X-ray computed tomography (CT) identified the geometry of the FSW and material composition. Results: The grain morphology in the FSW varied in the stir zone with a fine grain structure in the weld nugget and larger grains in the thermomechanical affected zone (TMAZ); the grains were larger in the retreating side (RS) compared to the advancing side (AS). Tungsten deposits were found in the weld nugget and attributed to tool wear. The mechanical properties of the weld subregions showed that the material in the stir zone had a greater yield strength than the base material and the RS of the FSW was much more ductile than the weld nugget and the AS side. The tungsten distributions in the stir zone correlated with the local mechanical behaviour. Conclusions: A novel methodology is developed that combines microstructural observations with HR-DIC enabling, for the first time, the FSW sub-region mechanical behaviour, to be related to the local grain morphology and inclusions caused by tool wear
Defects in Friction Stir Welding of Steel
Defects associated with friction stir welding of two steel grades including DH36 and EH46 were investigated. Different welding parameters including tool rotational and tool traverse (linear) speeds were applied to understand their effect on weld seam defects including microcracks and voids formation. SEM images and infinite focus microscopy were employed to identify the defects types. Two new defects associated with the friction stir welding process are introduced in this work. The first defect identified in this work is a microcrack found between the plunge and the steady state region and attributed to the traverse moving of the tool with unsuitable speed from the plunge-dwell to the steady state stage. The tool traverse speed has recommended to travel 20 mm more with accelerated velocity range of 0.1 from the maximum traverse speed until reaching the steady state. The maximum recommended traverse speed in the steady state was also suggested to be less than 400 mm/min in order to avoid the lack in material flow. The second type of defect observed in this work was microcracks inside the stirred zone caused by elemental precipitations of TiN. The precipitates of TiN were attributed to the high tool rotational speed which caused the peak temperature to exceed 1200 °C at the top of the stirred zone and based on previous work. The limit of tool rotational speed was recommended to be maintained in the range of 200-500 RPM based on the mechanical experiments on the FSW samples
Does training with amplitude modulated tones affect tone-vocoded speech perception?
Temporal-envelope cues are essential for successful speech perception. We asked here whether training on stimuli containing temporal-envelope cues without speech content can improve the perception of spectrally-degraded (vocoded) speech in which the temporal-envelope (but not the temporal fine structure) is mainly preserved. Two groups of listeners were trained on different amplitude-modulation (AM) based tasks, either AM detection or AM-rate discrimination (21 blocks of 60 trials during two days, 1260 trials; frequency range: 4Hz, 8Hz, and 16Hz), while an additional control group did not undertake any training. Consonant identification in vocoded vowel-consonant-vowel stimuli was tested before and after training on the AM tasks (or at an equivalent time interval for the control group). Following training, only the trained groups showed a significant improvement in the perception of vocoded speech, but the improvement did not significantly differ from that observed for controls. Thus, we do not find convincing evidence that this amount of training with temporal-envelope cues without speech content provide significant benefit for vocoded speech intelligibility. Alternative training regimens using vocoded speech along the linguistic hierarchy should be explored
Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin
Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates
A cross-layer architecture to improve mobile host rate performance and to solve unfairness problem in WLANs
The evolution of the Internet has been mainly promoted in recent years by the emergence and pro- liferation of wireless access networks towards a global ambient and pervasive network accessed from mobile devices. These new access networks have introduced new MAC layers independently of the legacy "wire- oriented" protocols that are still at the heart of the pro- tocol stacks of the end systems. This principle of isola- tion and independence between layers advocated by the OSI model has its drawbacks of maladjustment between new access methods and higher-level protocols built on the assumption of a wired Internet. In this paper, we introduce and deliver solutions for several pathologi- cal communication behaviors resulting from the malad- justment between WLAN MAC and higher layer stan- dard protocols such as TCP/IP and UDP/IP. Specially, based on an efficient analytical model for WLANs band- width estimation, we address in this paper the two fol- lowing issues: 1) Performance degradation due to the lack of flow control between the MAC and upper layer resulting in potential MAC buffer overflow; 2) Unfair bandwidth share issues between various type of flows. We show how these syndromes can be efficiently solved from neutral "cross layer" interactions which entail no changes in the considered protocols and standards
Recommended from our members
Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach
Although field-collected recordings typically contain multiple simultaneously vocalizing birds of different species, acoustic species classification in this setting has received little study so far. This work formulates the problem of classifying the set of species present in an audio recording using the multi-instance multi-label (MIML) framework for machine learning, and proposes a MIML bag generator for audio, i.e., an algorithm which transforms an input audio signal into a bag-of-instances representation suitable for use with MIML classifiers. The proposed representation uses a 2D time-frequency segmentation of the audio signal, which can separate bird sounds that overlap in time. Experiments using audio data containing 13 species collected with unattended omnidirectional microphones in the H. J. Andrews Experimental Forest demonstrate that the proposed methods achieve high accuracy (96.1% true positives/negatives). Automated detection of bird species occurrence using MIML has many potential applications, particularly in long-term monitoring of remote sites, species distribution modeling, and conservation planning
Secure referee selection for fair and responsive peer-to-peer gaming
Peer-to-Peer (P2P) architectures for Massively Multiplayer Online Games (MMOG) provide better scalability than Client/Server (C/S); however, they increase the possibility of cheating. Recently proposed P2P protocols use trusted referees that simulate/validate the game to provide security equivalent to C/S. When selecting referees from untrusted peers, selecting non-colluding referees becomes critical. Further, referees should be selected such that the range and length of delays to players is minimised (maximising game fairness and responsiveness). In this paper we formally define the referee selection problem and propose two secure referee selection algorithms, SRS-1 and SRS-2, to solve it. Both algorithms ensure the probability of corrupt referees controlling a zone/region is below a predefined limit, while attempting to maximise responsiveness and fairness. The trade-off between responsiveness and fairness is adjustable for both algorithms. Simulations of three different scenarios show the effectiveness of our algorithms
- …