200 research outputs found
End wall flow characteristics and overall performance of an axial flow compressor stage
This review indicates the possible future directions for research on endwall flows in axial flow compressors. Theoretical investigations on the rotor blade endwall flows in axial flow compressors reported here include the secondary flow calculation and the development of the momentum integral equations for the prediction of the annulus wall boundary layer. The equations for secondary vorticity at the rotor exit are solved analytically. The solution includes the effects of rotation and the viscosity. The momentum integral equations derived include the effect of the blade boundary layers. The axial flow compressor facility of the Department of Aerospace Engineering at The Pennsylvania State University, which is used for the experimental investigations of the endwall flows, is described in some detail. The overall performance and other preliminary experimental results are presented. Extensive radial flow surveys are carried out at the design and various off design conditions. These are presented and interpreted in this report. The following experimental investigations of the blade endwall flows are carried out. (1) Rotor blade endwall flows: The following measurements are carried out at four flow coefficients. (a) The rotor blade static pressures at various axial and radial stations (with special emphasis near the blade tips). (b) The hub wall static pressures inside the rotor blade passage at various axial and tangential stations. (2) IGV endwall flows: The following measurements are carried out at the design flow coefficient. (a) The boundary layer profiles at various axial and tangential stations inside the blade passage and at the blade exit. (b) Casing static pressures and limiting streamline angles inside the blade passage
Blade end wall flows in compressors
A brief summary of previous work carried out on end wall flow phenomena is presented with major emphasis on annulus wall boundary layer
End wall flows in rotors and stators of a single stage compressor
A computer code for solving the parabolized Navier-Stokes equations for internal flows was developed. Oscillations that develop in the calculation procedure are discussed. The measurements made in the hub and annulus wall boundary layers are summarized. The flow in the hub wall boundary layer, starting ahead of the inlet guide vanes to the inlet of the rotor is traced
Three dimensional flow field inside compressor rotor, including blade boundary layers
The flow in a turbomachinery blade passage has a predominant flow direction. The viscous diffusion in the streamwise direction is usually small and the elliptic influence is transmitted upstream through the pressure field. Starting with a guessed pressure field, it is possible to converge on the full elliptic solution by iterating between a parabolic solution and an iteration of the pressure field. The main steps of the calculation are given. The blade boundary layers which are three dimensional with laminar, transitional, turbulent, and separation zones are investigated. The kinetic energy is analyzed, and the dissipation equation is presented. Measurements were made of the three dimensional flow inside an axial flow compressor passage
Unsteady Flow Field in a Multistage Axial Flow Compressor
The flow field in a multistage compressor is three-dimensional, unsteady, and turbulent with substantial viscous effects. Some of the specific phenomena that has eluded designers include the effects of rotor-stator and rotor-rotor interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. An attempt was made, to resolve experimentally, the unsteady pressure and temperature fields downstream of the second stator of a multistage axial flow compressor which will provide information on rotor-stator interaction effects and the nature of the unsteadiness in an embedded stator of a three stage axial flow compressor. Detailed area traverse measurements using pneumatic five hole probe, thermocouple probe, semi-conductor total pressure probe (Kulite) and an aspirating probe downstream of the second stator were conducted at the peak efficiency operating condition. The unsteady data was then reduced through an ensemble averaging technique which splits the signal into deterministic and unresolved components. Auto and cross correlation techniques were used to correlate the deterministic total temperature and velocity components (acquired using a slanted hot-film probe at the same measurement locations) and the gradients, distributions and relative weights of each of the terms of the average passage equation were then determined. Based on these measurements it was observed that the stator wakes, hub leakage flow region, casing endwall suction surface corner region, and the casing endwall region away from the blade surfaces were the regions of highest losses in total pressure, lowest efficiency and highest levels of unresolved unsteadiness. The deterministic unsteadiness was found to be high in the hub and casing endwall regions as well as on the pressure side of the stator wake. The spectral distribution of hot-wire and kulite voltages shows that at least eight harmonics of all three rotor blade passing frequencies are present at this measurement location. In addition to the basic three rotor blade passing frequencies (R1, R2 and R3) and their harmonics, various difference frequencies such as (2R1 -R2) and (2R3-R2) and their harmonics are also observed. These difference frequencies are due to viscous and potential interactions between rotors 1, 2 and 3 which are sensed by both the total pressure and aspirating probes at this location. Significant changes occur to the stator exit flow features with passage of the rotor upstream of the stator. Because of higher convection speeds of the rotor wake on the suction surface of the downstream stator than on the pressure side, the chopped rotor wake was found to be arriving at different times on either side of the stator wake. As the rotor passes across the stator
IOT BASED HEALTH MONITORING SYSTEM USING CLOUD COMPUTING
In this machine an affected man or woman may be sporting hardware having sensors and Android phone application, the sensors will sense the body temperature and coronary heart charge of the affected person and those data are transferred to the Android cellular phone through Bluetooth/Wi-fi. The device has the cloud database which shops all information approximately affected person’s fitness and the Doctors will prescribe remedy the use of this records saved inside the cloud. The device even it allows the patient to transport freely and may be monitored constantly. The Android cellular phone could be containing an software that allows you to locate the coronary heart assault constant with the obtained records respectively and if any abnormalities are determined regarding heart attack message can be dispatched to affected man or woman’s physician, spouse and kids, and hospitals. The speedy improvement of the Internet of factors generation makes it possible for connecting diverse clever devices collectively thru the Internet and imparting extra records interoperability strategies for application motive. Recent studies advocate extra capability applications of IoT in records in-intensity enterprise sectors collectively with healthcare services. However, the style of the gadgets in IoT motives the heterogeneity trouble of the information layout in IoT platform. Meanwhile, using IoT generation in packages has spurred the boom of real-time statistics, which makes the records storage and having access to greater difficult and hard. Here in this paper, a greener system to device verbal exchange is finished for healthcare information. So we're developing a project to keep away from such sudden lack of lifestyles charges with the resource of the use of Body Health Monitoring
1-(2-Chloroacetyl)-3-methyl-2,6-bis(3,4,5-trimethoxyphenyl)piperidine-4-one
In the crystal structure of the title compound, C26H32ClNO8, the piperidine ring is in a twist-chair conformation, with puckering parameters Q = 0.655 (4) Å, θ = 93.1 (1) and ϕ = 254.4 (3)°. The ortho C atoms of the piperidine ring deviate from the plane defined by the remaining ring atoms by 0.380 (3) and −0.250 (3) Å
1-Acryloyl-2,6-bis(4-chlorophenyl)-3,5-dimethylpiperidin-4-one
In the crystal structure of the title compound, C22H21Cl2NO2, the piperidinone ring is in a boat conformation
The effect of nutritional supplementation on the multifocal electroretinogram in healthy eyes
BACKGROUND: Previous studies have demonstrated an increase in macular pigment optical density (MPOD) with lutein (L)-based supplementation in healthy eyes. However, not all studies have assessed whether this increase in MPOD is associated with changes to other measures of retinal function such as the multifocal ERG (mfERG). Some studies also fail to report dietary levels of L and zeaxanthin (Z). Because of the associations between increased levels of L and Z, and reduced risk of AMD, this study was designed to assess the effects of L-based supplementation on mfERG amplitudes and latencies in healthy eyes. METHODS: Multifocal ERG amplitudes, visual acuity, contrast sensitivity, MPOD and dietary levels of L and Z were assessed in this longitudinal, randomized clinical trial. Fifty-two healthy eyes from 52 participants were randomly allocated to receive a L-based supplement (treated group), or no supplement (non-treated group). RESULTS: There were 25 subjects aged 18-77 (mean age ± SD; 48 ± 17) in the treated group and 27 subjects aged 21-69 (mean age ± SD; 43 ± 16) in the non-treated group. All participants attended for three visits: visit one at baseline, visit two at 20 weeks and visit three at 40 weeks. A statistically significant increase in MPOD (F = 17.0, p ≤ 0.001) and shortening of mfERG ring 2 P1 latency (F = 3.69, p = 0.04) was seen in the treated group. CONCLUSIONS: Although the results were not clinically significant, the reported trend for improvement in MPOD and mfERG outcomes warrants further investigation
Ruthenium oxide-carbon-based nanofiller-reinforced conducting polymer nanocomposites and their supercapacitor applications.
In this review article, we have presented for the first time the new applications of supercapacitor technologies and working principles of the family of RuO2-carbon-based nanofiller-reinforced conducting polymer nanocomposites. Our review focuses on pseudocapacitors and symmetric and asymmetric supercapacitors. Over the last years, the supercapacitors as a new technology in energy storage systems have attracted more and more attention. They have some unique characteristics such as fast charge/discharge capability, high energy and power densities, and long stability. However, the need for economic, compatible, and easy synthesis materials for supercapacitors have led to the development of RuO2-carbon-based nanofiller-reinforced conducting polymer nanocomposites with RuO2. Therefore, the aim of this manuscript was to review RuO2-carbon-based nanofiller-reinforced conducting polymer nanocomposites with RuO2 over the last 17 years
- …