3 research outputs found

    Biomarkers of oxidative stress tethered to cardiovascular diseases.

    No full text
    Cardiovascular disease (CVD) is a broad term that incorporated a group of conditions that affect the blood vessels and the heart. CVD is a foremost cause of fatalities around the world. Multiple pathophysiological mechanisms are involved in CVD; however, oxidative stress plays a vital role in generating reactive oxygen species (ROS). Oxidative stress occurs when the concentration of oxidants exceeds the potency of antioxidants within the body while producing reactive nitrogen species (RNS). ROS generated by oxidative stress disrupts cell signaling, DNA damage, lipids, and proteins, thereby resulting in inflammation and apoptosis. Mitochondria is the primary source of ROS production within cells. Increased ROS production reduces nitric oxide (NO) bioavailability, which elevates vasoconstriction within the arteries and contributes to the development of hypertension. ROS production has also been linked to the development of atherosclerotic plaque. Antioxidants can decrease oxidative stress in the body; however, various therapeutic drugs have been designed to treat oxidative stress damage due to CVD. The present review provides a detailed narrative of the oxidative stress and ROS generation with a primary focus on the oxidative stress biomarker and its association with CVD. We have also discussed the complex relationship between inflammation and endothelial dysfunction in CVD as well as oxidative stress-induced obesity in CVD. Finally, we discussed the role of antioxidants in reducing oxidative stress in CVD

    Understanding kidney injury in covid-19; a pressing priority

    Get PDF
    The 2019 novel coronavirus disease (COVID-19) is a newly defined infectious and highly contagious acute disease caused by the severe acute respiratory syndrome coronavirus 2 ( (SARS-CoV-2). COVID-19 is mainly characterized by an acute respiratory disease however it can also affect multiple other organ systems such as the kidney, gastrointestinal tract, heart, vascular system, and the central nervous system. Kidney involvement is frequent in patients with COVID-19 and this review aims to explore the available data on kidney and COVID-19. In conclusion, COVID-19 infection can affect renal function and may cause acute kidney injury (AKI), due to several mechanisms that need to be fully elucidated. As only supportive management strategies are available for treating AKI in COVID-19, it is necessary to identify and preserve renal function during SARS-CoV-2 infection. © 2021 The Author(s).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore