4,861 research outputs found

    Gravitational Collapse of Dust with a Cosmological Constant

    Get PDF
    The recent analysis of Markovic and Shapiro on the effect of a cosmological constant on the evolution of a spherically symmetric homogeneous dust ball is extended to include the inhomogeneous and degenerate cases. The histories are shown by way of effective potential and Penrose-Carter diagrams.Comment: 2 pages, 2 figures (png), revtex. To appear in Phys. Rev.

    Nascent polypeptide chains exit the ribosome in the same relative position in both eucaryotes and procaryotes.

    Get PDF
    We located the polypeptide nascent chain as it leaves cytoplasmic ribosomes from the plant Lemna gibba by immune electron microscopy using antibodies against the small subunit of the enzyme ribulose-1,5-bisphosphate carboxylase. Similar studies with Escherichia coli ribosomes, using antibodies directed against the enzyme beta-galactosidase, show that the polypeptide nascent chain emerges in the same relative position in plants and bacteria. The eucaryotic ribosomal exit site is on the large subunit, approximately 75 A from the interface between subunits and nearly 160 A from the central protuberance, the presumed site for peptidyl transfer. This is the first functional site on both the eucaryotic and procaryotic ribosomes to be determined

    Oscillating Fracture in Rubber

    Full text link
    We have found an oscillating instability of fast-running cracks in thin rubber sheets. A well-defined transition from straight to oscillating cracks occurs as the amount of biaxial strain increases. Measurements of the amplitude and wavelength of the oscillation near the onset of this instability indicate that the instability is a Hopf bifurcation

    Biodistribution and PET Imaging of pharmacokinetics of manganese in mice using Manganese-52

    Get PDF
    <div><p>Manganese is essential to life, and humans typically absorb sufficient quantities of this element from a normal healthy diet; however, chronic, elevated ingestion or inhalation of manganese can be neurotoxic, potentially leading to <i>manganism</i>. Although imaging of large amounts of accumulated Mn(II) is possible by MRI, quantitative measurement of the biodistribution of manganese, particularly at the trace level, can be challenging. In this study, we produced the positron-emitting radionuclide <sup>52</sup>Mn (<i>t</i><sub><i>1/2</i></sub> = 5.6 d) by proton bombardment (<i>E</i><sub><i>p</i></sub><15 MeV) of chromium metal, followed by solid-phase isolation by cation-exchange chromatography. An aqueous solution of [<sup>52</sup>Mn]MnCl<sub>2</sub> was nebulized into a closed chamber with openings through which mice inhaled the aerosol, and a separate cohort of mice received intravenous (IV) injections of [<sup>52</sup>Mn]MnCl<sub>2</sub>. <i>Ex vivo</i> biodistribution was performed at 1 h and 1 d post-injection/inhalation (p.i.). In both trials, we observed uptake in lungs and thyroid at 1 d p.i. Manganese is known to cross the blood-brain barrier, as confirmed in our studies following IV injection (0.86%ID/g, 1 d p.i.) and following inhalation of aerosol, (0.31%ID/g, 1 d p.i.). Uptake in salivary gland and pancreas were observed at 1 d p.i. (0.5 and 0.8%ID/g), but to a much greater degree from IV injection (6.8 and 10%ID/g). In a separate study, mice received IV injection of an imaging dose of [<sup>52</sup>Mn]MnCl<sub>2</sub>, followed by <i>in vivo</i> imaging by positron emission tomography (PET) and <i>ex vivo</i> biodistribution. The results from this study supported many of the results from the biodistribution-only studies. In this work, we have confirmed results in the literature and contributed new results for the biodistribution of inhaled radiomanganese for several organs. Our results could serve as supporting information for environmental and occupational regulations, for designing PET studies utilizing <sup>52</sup>Mn, and/or for predicting the biodistribution of manganese-based MR contrast agents.</p></div

    Junctions and thin shells in general relativity using computer algebra I: The Darmois-Israel Formalism

    Full text link
    We present the GRjunction package which allows boundary surfaces and thin-shells in general relativity to be studied with a computer algebra system. Implementing the Darmois-Israel thin shell formalism requires a careful selection of definitions and algorithms to ensure that results are generated in a straight-forward way. We have used the package to correctly reproduce a wide variety of examples from the literature. We present several of these verifications as a means of demonstrating the packages capabilities. We then use GRjunction to perform a new calculation - joining two Kerr solutions with differing masses and angular momenta along a thin shell in the slow rotation limit.Comment: Minor LaTeX error corrected. GRjunction for GRTensorII is available from http://astro.queensu.ca/~grtensor/GRjunction.htm

    Observation of long range magnetic ordering in pyrohafnate Nd2Hf2O7: A neutron diffraction study

    Get PDF
    We have investigated the physical properties of a pyrochlore hafnate Nd2Hf2O7 using ac magnetic susceptibility \chi_ac(T), dc magnetic susceptibility \chi(T), isothermal magnetization M(H) and heat capacity C_p(T) measurements, and determined the magnetic ground state by neutron powder diffraction study. An upturn is observed below 6 K in C_p(T)/T, however both C_p(T) and \chi(T) do not show any clear anomaly down to 2 K. The \chi_ac(T) shows a well pronounced anomaly indicating an antiferromagnetic transition at T_N = 0.55 K. The long range antiferromagnetic ordering is confirmed by neutron diffraction. The refinement of neutron diffraction pattern reveals an all-in/all-out antiferromagnetic structure, where for successive tetrahedra, the four Nd3+ magnetic moments point alternatively all-into or all-out-of the tetrahedron, with an ordering wavevector k = (0, 0, 0) and an ordered state magnetic moment of m = 0.62(1) \mu_B/Nd at 0.1 K. The ordered moment is strongly reduced reflecting strong quantum fluctuations in ordered state.Comment: 10 pages, 9 figures and 2 tables; to appear in Phys. Rev.

    Microscopic theory of quantum-transport phenomena in mesoscopic systems: A Monte Carlo approach

    Get PDF
    A theoretical investigation of quantum-transport phenomena in mesoscopic systems is presented. In particular, a generalization to ``open systems'' of the well-known semiconductor Bloch equations is proposed. The presence of spatial boundary conditions manifest itself through self-energy corrections and additional source terms in the kinetic equations, whose form is suitable for a solution via a generalized Monte Carlo simulation. The proposed approach is applied to the study of quantum-transport phenomena in double-barrier structures as well as in superlattices, showing a strong interplay between phase coherence and relaxation.Comment: to appear in Phys. Rev. Let
    • …
    corecore