73 research outputs found

    Boundary Effects in Local Inflation and Spectrum of Density Perturbations

    Full text link
    We observe that when a local patch in a radiation filled Robertson-Walker universe inflates by some reason, outside perturbations can enter into the inflating region. Generally, the physical wavelengths of these perturbations become larger than the Hubble radius as they cross into the inflating space and their amplitudes freeze out immediately. It turns out that the corresponding power spectrum is not scale invariant. Although these perturbations cannot reach out to a distance inner observer shielded by a de Sitter horizon, they still indicate a curious boundary effect in local inflationary scenarios.Comment: 11 pages, 8 figures, revtex4, v4: minor typos corrected, twocolumn versio

    A two-mass expanding exact space-time solution

    Full text link
    In order to understand how locally static configurations around gravitationally bound bodies can be embedded in an expanding universe, we investigate the solutions of general relativity describing a space-time whose spatial sections have the topology of a 3-sphere with two identical masses at the poles. We show that Israel junction conditions imply that two spherically symmetric static regions around the masses cannot be glued together. If one is interested in an exterior solution, this prevents the geometry around the masses to be of the Schwarzschild type and leads to the introduction of a cosmological constant. The study of the extension of the Kottler space-time shows that there exists a non-static solution consisting of two static regions surrounding the masses that match a Kantowski-Sachs expanding region on the cosmological horizon. The comparison with a Swiss-Cheese construction is also discussed.Comment: 15 pages, 5 figures. Replaced to match the published versio

    Junction Conditions and Consequences of Quasi-Spherical Space-Time with Electro-Magnetic Field and Vaidya Matric

    Full text link
    In this work the junction conditions between the exterior Reissner-Nordstrom-Vaidya space-time with the interior quasi-spherical Szekeres space-time have been studied for analyzing gravitational collapse in the presence of a magneto-hydrodynamic fluid undergoing dissipation in the form of heat flow. We have discussed about the apparent horizon and have evaluated the time difference between the formation of apparent horizon and central singularity.Comment: 8 latex pages, RevTex style, no figure

    Response of Wheat Fungal Diseases to Elevated Atmospheric CO2 Level

    Get PDF
    Infection with fungal pathogens on wheat varieties with different levels of resistance was tested at ambient (NC, 390 ppm) and elevated (EC, 750 ppm) atmospheric CO2 levels in the phytotron. EC was found to affect many aspects of the plant-pathogen interaction. Infection with most fungal diseases was usually found to be promoted by elevated CO2 level in susceptible varieties. Powdery mildew, leaf rust and stem rust produced more severe symptoms on plants of susceptible varieties, while resistant varieties were not infected even at EC. The penetration of Fusarium head blight (FHB) into the spike was delayed by EC in Mv Mambo, while it was unaffected in Mv Regiment and stimulated in Mv Emma. EC increased the propagation of FHB in Mv Mambo and Mv Emma. Enhanced resistance to the spread of Fusarium within the plant was only found in Mv Regiment, which has good resistance to penetration but poor resistance to the spread of FHB at NC. FHB infection was more severe at EC in two varieties, while the plants of Mv Regiment, which has the best field resistance at NC, did not exhibit a higher infection level at EC. The above results suggest that breeding for new resistant varieties will remain a useful means of preventing more severe infection in a future with higher atmospheric CO2 levels

    A cyclic universe with colour fields

    Full text link
    The topology of the universe is discussed in relation to the singularity problem. We explore the possibility that the initial state of the universe might have had a structure with 3-Klein bottle topology, which would lead to a model of a nonsingular oscillating (cyclic) universe with a well-defined boundary condition. The same topology is assumed to be intrinsic to the nature of the hypothetical primitive constituents of matter (usually called preons) giving rise to the observed variety of elementary particles. Some phenomenological implications of this approach are also discussed.Comment: 21 pages, 9 figures; v.4: final versio
    • …
    corecore