66 research outputs found
Development of pGEMINI, a Plant Gateway Destination Vector Allowing the Simultaneous Integration of Two cDNA via a Single LR-Clonase Reaction
Gateway technology has been used to facilitate the generation of a large number of constructs for the modification of plants for research purposes. However, many of the currently available vectors only allow the integration of a single cDNA of interest into an expression clone. The ability to over-express multiple genes in combination is essential for the study of plant development where several transcripts have a role to play in one or more metabolic processes. The tools to carry out such studies are limited, and in many cases rely on the incorporation of cDNA into expression systems via conventional cloning, which can be both time consuming and laborious. To our knowledge, this study reports on the first development of a vector allowing the simultaneous integration of two independent cDNAs via a single LR-clonase reaction. This vector “pGEMINI” represents a powerful molecular tool offering the ability to study the role of multi-cDNA constructs on plant development, and opens up the process of gene stacking and the study of gene combinations through transient or stable transformation procedures
Highly Tissue Specific Expression of Sphinx Supports Its Male Courtship Related Role in Drosophila melanogaster
Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5′ flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes
Mechanisms of Maximum Information Preservation in the Drosophila Antennal Lobe
We examined the presence of maximum information preservation, which may be a fundamental principle of information transmission in all sensory modalities, in the Drosophila antennal lobe using an experimentally grounded network model and physiological data. Recent studies have shown a nonlinear firing rate transformation between olfactory receptor neurons (ORNs) and second-order projection neurons (PNs). As a result, PNs can use their dynamic range more uniformly than ORNs in response to a diverse set of odors. Although this firing rate transformation is thought to assist the decoder in discriminating between odors, there are no comprehensive, quantitatively supported studies examining this notion. Therefore, we quantitatively investigated the efficiency of this firing rate transformation from the viewpoint of information preservation by computing the mutual information between odor stimuli and PN responses in our network model. In the Drosophila olfactory system, all ORNs and PNs are divided into unique functional processing units called glomeruli. The nonlinear transformation between ORNs and PNs is formed by intraglomerular transformation and interglomerular interaction through local neurons (LNs). By exploring possible nonlinear transformations produced by these two factors in our network model, we found that mutual information is maximized when a weak ORN input is preferentially amplified within a glomerulus and the net LN input to each glomerulus is inhibitory. It is noteworthy that this is the very combination observed experimentally. Furthermore, the shape of the resultant nonlinear transformation is similar to that observed experimentally. These results imply that information related to odor stimuli is almost maximally preserved in the Drosophila olfactory circuit. We also discuss how intraglomerular transformation and interglomerular inhibition combine to maximize mutual information
Unc-51/ATG1 Controls Axonal and Dendritic Development via Kinesin-Mediated Vesicle Transport in the Drosophila Brain
Background:Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport.Methodology/Principal Findings:In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II), an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM) and No distributive disjunction (Nod), remains unaltered. Genetic analyses of kinesin light chain (Klc) and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations.Conclusions/Significance:Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of developing neurons
Towards plant-odor-related olfactory neuroethology in Drosophila
Drosophila melanogaster is today one of the three foremost models in olfactory research, paralleled only by the mouse and the nematode. In the last years, immense progress has been achieved by combining neurogenetic tools with neurophysiology, anatomy, chemistry, and behavioral assays. One of the most important tasks for a fruit fly is to find a substrate for eating and laying eggs. To perform this task the fly is dependent on olfactory cues emitted by suitable substrates as e.g. decaying fruit. In addition, in this area, considerable progress has been made during the last years, and more and more natural and behaviorally active ligands have been identified. The future challenge is to tie the progress in different fields together to give us a better understanding of how a fly really behaves. Not in a test tube, but in nature. Here, we review our present state of knowledge regarding Drosophila plant-odor-related olfactory neuroethology to provide a basis for new progress
The Use of HyPer to Examine Spatial and Temporal Changes in H₂O₂ in High Light-Exposed Plants
Exposure of photosynthetic cells of leaf tissues of Arabidopsis thaliana (Arabidopsis) to high light intensities (HL) may provoke a rapid rise in hydrogen peroxide (H₂O₂ ) levels in chloroplasts and subcellular compartments, such as peroxisomes, associated with photosynthetic metabolism. It has been hypothesized that when H₂O₂ is contained at or near its site of production then it plays an important role in signaling to induce acclimation to HL. However, should this discrete containment fail and H₂O₂ levels exceed the capacity of antioxidant systems to scavenge them, then oxidative stress ensues which triggers cell death. To test this hypothesis, the spatiotemporal accumulation of H₂O₂ needs to be quantified in different subcellular compartments. In this chapter, preliminary experiments are presented on the use of Arabidopsis seedlings transformed with a nuclear-encoded cytosol-located yellow fluorescent protein-based sensor for H₂O₂ , called HyPer. HyPer allows ratiometric determination of its fluorescence at two excitation wavelengths, which frees quantification of H₂O₂ from the variable levels of HyPer in vivo. HyPer fluorescence was shown to have the potential to provide the necessary spatial, temporal, and quantitative resolution to study HL responses of seedlings using confocal microscopy. Chlorophyll fluorescence imaging was used to quantify photoinhibition of photosynthesis induced by HL treatment of seedlings on the microscope staging. However, several technical issues remain, the most challenging of which is the silencing of HyPer expression beyond the seedling stage. This limited our pilot studies to cotyledon epidermal cells, which while not photosynthetic, nevertheless responded to HL with 45% increase in cytosolic H₂O₂
Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster
We present the first three-dimensional map of the antennal lobe of Drosophila melanogaster, based on confocal microscopic analysis of glomeruli stained with the neuropil-specific monoclonal antibody nc82. The analysis of confocal stacks allowed us to identify glomeruli according to the criteria shape, size, position, and intensity of antibody labeling. Forty glomeruli were labeled by nc82, eight of which have not been described before. Three glomeruli previously shown exclusively by backfills were not discernible in nc82 stainings. We distinguish three classes of glomeruli: (1) 'landmark' glomeruli that are constant in all four criteria mentioned above, (2) less well-demarcated glomeruli that deviate in a single criterion, and (3) poorly defined glomeruli that vary in more than one criterion. All class 2 and 3 glomeruli can be identified by comparison with landmark neighbors. To further aid identification, our model assigns glomeruli to five arrays, each of which is defined by a prominent landmark glomerulus. Six glomeruli consist of distinct, but contiguous structural units, termed 'compartments.' Glomerular variability observed occasionally between males and females is in the same range as between individuals of the same sex, suggesting the lack of a significant sexual dimorphism in the glomerular pattern. We compare the new model with a previous map and address its potential for mapping activity and expression patterns. An important goal of this work was to create three- dimensional reference models of the antennal lobe, which are accessible on- line
- …