104 research outputs found
Human T lymphotropic virus type-1 p30(II )alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes
BACKGROUND: Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T-cell leukemia/lymphoma and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13(II )and p30(II), which are incompletely defined in the virus life cycle or HTLV-1 pathogenesis. Proviral clones of the virus with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. Exogenous expression of p30(II )differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and represses tax/rex RNA nuclear export. RESULTS: Herein, we further characterized the role of p30(II )in regulation of cellular gene expression, using stable p30(II )expression system employing lentiviral vectors to test cellular gene expression with Affymetrix U133A arrays, representing ~33,000 human genes. Reporter assays in Jurkat T cells and RT-PCR in Jurkat and primary CD4+ T-lymphocytes were used to confirm selected gene expression patterns. Our data reveals alterations of interrelated pathways of cell proliferation, T-cell signaling, apoptosis and cell cycle in p30(II )expressing Jurkat T cells. In all categories, p30(II )appeared to be an overall repressor of cellular gene expression, while selectively increasing the expression of certain key regulatory genes. CONCLUSIONS: We are the first to demonstrate that p30(II), while repressing the expression of many genes, selectively activates key gene pathways involved in T-cell signaling/activation. Collectively, our data suggests that this complex retrovirus, associated with lymphoproliferative diseases, relies upon accessory gene products to modify cellular environment to promote clonal expansion of the virus genome and thus maintain proviral loads in vivo
Low CD4/CD8 T-Cell Ratio Associated with Inflammatory Arthropathy in Human T-Cell Leukemia Virus Type I Tax Transgenic Mice
Human T-cell leukemia virus type I (HTLV-1) can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL) as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice.Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble those in HAM/TSP patients rather than those in rheumatoid arthritis patients
HTLV-1 bZIP Factor Induces T-Cell Lymphoma and Systemic Inflammation In Vivo
Human T-cell leukemia virus type 1 (HTLV-1) is the causal agent of a neoplastic disease of CD4+ T cells, adult T-cell leukemia (ATL), and inflammatory diseases including HTLV-1 associated myelopathy/tropical spastic paraparesis, dermatitis, and inflammatory lung diseases. ATL cells, which constitutively express CD25, resemble CD25+CD4+ regulatory T cells (Treg). Approximately 60% of ATL cases indeed harbor leukemic cells that express FoxP3, a key transcription factor for Treg cells. HTLV-1 encodes an antisense transcript, HTLV-1 bZIP factor (HBZ), which is expressed in all ATL cases. In this study, we show that transgenic expression of HBZ in CD4+ T cells induced T-cell lymphomas and systemic inflammation in mice, resembling diseases observed in HTLV-1 infected individuals. In HBZ-transgenic mice, CD4+Foxp3+ Treg cells and effector/memory CD4+ T cells increased in vivo. As a mechanism of increased Treg cells, HBZ expression directly induced Foxp3 gene transcription in T cells. The increased CD4+Foxp3+ Treg cells in HBZ transgenic mice were functionally impaired while their proliferation was enhanced. HBZ could physically interact with Foxp3 and NFAT, thereby impairing the suppressive function of Treg cells. Thus, the expression of HBZ in CD4+ T cells is a key mechanism of HTLV-1-induced neoplastic and inflammatory diseases
Conference highlights of the 15th international conference on human retrovirology: HTLV and related retroviruses, 4-8 june 2011, Leuven, Gembloux, Belgium
The June 2011 15th International Conference on Human Retrovirology: HTLV and Related Viruses marks approximately 30 years since the discovery of HTLV-1. As anticipated, a large number of abstracts were submitted and presented by scientists, new and old to the field of retrovirology, from all five continents. The aim of this review is to distribute the scientific highlights of the presentations as analysed and represented by experts in specific fields of epidemiology, clinical research, immunology, animal models, molecular and cellular biology, and virology
HTLV-1-induced leukotriene B4 secretion by T cells promotes T cell recruitment and virus propagation.
The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo
ORIGIN AND PREVALENCE OF HUMAN T-LYMPHOTROPIC VIRUS TYPE 1 (HTLV-1) AND TYPE 2 (HTLV-2) AMONG INDIGENOUS POPULATIONS IN THE AMERICAS
Human T-lymphotropic virus type 1 (HTLV-1) is found in indigenous peoples of the Pacific Islands and the Americas, whereas type 2 (HTLV-2) is widely distributed among the indigenous peoples of the Americas, where it appears to be more prevalent than HTLV-1, and in some tribes of Central Africa. HTLV-2 is considered ancestral in the Americas and is transmitted to the general population and injection drug users from the indigenous population. In the Americas, HTLV-1 has more than one origin, being brought by immigrants in the Paleolithic period through the Bering Strait, through slave trade during the colonial period, and through Japanese immigration from the early 20th century, whereas HTLV-2 was only brought by immigrants through the Bering Strait. The endemicity of HTLV-2 among the indigenous people of Brazil makes the Brazilian Amazon the largest endemic area in the world for its occurrence. A review of HTLV-1 in all Brazilian tribes supports the African origin of HTLV-1 in Brazil. The risk of hyperendemicity in these epidemiologically closed populations and transmission to other populations reinforces the importance of public health interventions for HTLV control, including the recognition of the infection among reportable diseases and events
- …