14 research outputs found

    CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction

    Full text link
    Given the recent advances in depth prediction from Convolutional Neural Networks (CNNs), this paper investigates how predicted depth maps from a deep neural network can be deployed for accurate and dense monocular reconstruction. We propose a method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM. Our fusion scheme privileges depth prediction in image locations where monocular SLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa. We demonstrate the use of depth prediction for estimating the absolute scale of the reconstruction, hence overcoming one of the major limitations of monocular SLAM. Finally, we propose a framework to efficiently fuse semantic labels, obtained from a single frame, with dense SLAM, yielding semantically coherent scene reconstruction from a single view. Evaluation results on two benchmark datasets show the robustness and accuracy of our approach.Comment: 10 pages, 6 figures, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, USA, June, 2017. The first two authors contribute equally to this pape

    Training-Free Layout Control with Cross-Attention Guidance

    Full text link
    Recent diffusion-based generators can produce high-quality images from textual prompts. However, they often disregard textual instructions that specify the spatial layout of the composition. We propose a simple approach that achieves robust layout control without the need for training or fine-tuning of the image generator. Our technique manipulates the cross-attention layers that the model uses to interface textual and visual information and steers the generation in the desired direction given, e.g., a user-specified layout. To determine how to best guide attention, we study the role of attention maps and explore two alternative strategies, forward and backward guidance. We thoroughly evaluate our approach on three benchmarks and provide several qualitative examples and a comparative analysis of the two strategies that demonstrate the superiority of backward guidance compared to forward guidance, as well as prior work. We further demonstrate the versatility of layout guidance by extending it to applications such as editing the layout and context of real images.Comment: WACV 2024, Project Page: https://silent-chen.github.io/layout-guidance

    DGE: direct gaussian 3D editing by consistent multi-view editing

    Get PDF
    We consider the problem of editing 3D objects and scenes based on open-ended language instructions. A common approach to this problem is to use a 2D image generator or editor to guide the 3D editing process, obviating the need for 3D data. However, this process is often inefficient due to the need for iterative updates of costly 3D representations, such as neural radiance fields, either through individual view edits or score distillation sampling. A major disadvantage of this approach is the slow convergence caused by aggregating inconsistent information across views, as the guidance from 2D models is not multi-view consistent. We thus introduce the Direct Gaussian Editor (DGE), a method that addresses these issues in two stages. First, we modify a given highquality image editor like InstructPix2Pix to be multi-view consistent. To do so, we propose a training-free approach that integrates cues from the 3D geometry of the underlying scene. Second, given a multi-view consistent edited sequence of images, we directly and efficiently optimize the 3D representation, which is based on 3D Gaussian Splatting. Because it avoids incremental and iterative edits, DGE is significantly more accurate and efficient than existing approaches and offers additional benefits, such as enabling selective editing of parts of the scene

    Measuring the Interpretability of Unsupervised Representations via Quantized Reverse Probing

    Full text link
    Self-supervised visual representation learning has recently attracted significant research interest. While a common way to evaluate self-supervised representations is through transfer to various downstream tasks, we instead investigate the problem of measuring their interpretability, i.e. understanding the semantics encoded in raw representations. We formulate the latter as estimating the mutual information between the representation and a space of manually labelled concepts. To quantify this we introduce a decoding bottleneck: information must be captured by simple predictors, mapping concepts to clusters in representation space. This approach, which we call reverse linear probing, provides a single number sensitive to the semanticity of the representation. This measure is also able to detect when the representation contains combinations of concepts (e.g., "red apple") instead of just individual attributes ("red" and "apple" independently). Finally, we propose to use supervised classifiers to automatically label large datasets in order to enrich the space of concepts used for probing. We use our method to evaluate a large number of self-supervised representations, ranking them by interpretability, highlight the differences that emerge compared to the standard evaluation with linear probes and discuss several qualitative insights. Code at: {\scriptsize{\url{https://github.com/iro-cp/ssl-qrp}}}.Comment: Published at ICLR 2022. Appendix included, 26 page

    Neural Feature Fusion Fields: 3D Distillation of Self-Supervised 2D Image Representations

    Full text link
    We present Neural Feature Fusion Fields (N3F), a method that improves dense 2D image feature extractors when the latter are applied to the analysis of multiple images reconstructible as a 3D scene. Given an image feature extractor, for example pre-trained using self-supervision, N3F uses it as a teacher to learn a student network defined in 3D space. The 3D student network is similar to a neural radiance field that distills said features and can be trained with the usual differentiable rendering machinery. As a consequence, N3F is readily applicable to most neural rendering formulations, including vanilla NeRF and its extensions to complex dynamic scenes. We show that our method not only enables semantic understanding in the context of scene-specific neural fields without the use of manual labels, but also consistently improves over the self-supervised 2D baselines. This is demonstrated by considering various tasks, such as 2D object retrieval, 3D segmentation, and scene editing, in diverse sequences, including long egocentric videos in the EPIC-KITCHENS benchmark.Comment: 3DV2022, Oral. Project page: https://www.robots.ox.ac.uk/~vadim/n3f

    Diffusion models for open-vocabulary segmentation

    Get PDF
    Open-vocabulary segmentation is the task of segmenting anything that can be named in an image. Recently, large-scale vision-language modelling has led to significant advances in open-vocabulary segmentation, but at the cost of gargantuan and increasing training and annotation efforts. Hence, we ask if it is possible to use existing foundation models to synthesise on-demand efficient segmentation algorithms for specific class sets, making them applicable in an open-vocabulary setting without the need to collect further data, annotations or perform training. To that end, we present OVDiff, a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation. OVDiff synthesises support image sets for arbitrary textual categories, creating for each a set of prototypes representative of both the category and its surrounding context (background). It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training. Our approach shows strong performance on a range of benchmarks, obtaining a lead of more than 5% over prior work on PASCAL VOC

    N2F2: hierarchical scene understanding with nested neural feature fields

    Get PDF
    Understanding complex scenes at multiple levels of abstraction remains a formidable challenge in computer vision. To address this, we introduce Nested Neural Feature Fields (N2F2), a novel approach that employs hierarchical supervision to learn a single feature field, wherein different dimensions within the same high-dimensional feature encode scene properties at varying granularities. Our method allows for a flexible definition of hierarchies, tailored to either the physical dimensions or semantics or both, thereby enabling a comprehensive and nuanced understanding of scenes. We leverage a 2D class-agnostic segmentation model to provide semantically meaningful pixel groupings at arbitrary scales in the image space, and query the CLIP vision-encoder to obtain language-aligned embeddings for each of these segments. Our proposed hierarchical supervision method then assigns different nested dimensions of the feature field to distill the CLIP embeddings using deferred volumetric rendering at varying physical scales, creating a coarse-to-fine representation. Extensive experiments show that our approach outperforms the state-of-the-art feature field distillation methods on tasks such as open-vocabulary 3D segmentation and localization, demonstrating the effectiveness of the learned nested feature field

    EPIC Fields: Marrying 3D Geometry and Video Understanding

    Get PDF
    Neural rendering is fuelling a unification of learning, 3D geometry and video understanding that has been waiting for more than two decades. Progress, however, is still hampered by a lack of suitable datasets and benchmarks. To address this gap, we introduce EPIC Fields, an augmentation of EPIC-KITCHENS with 3D camera information. Like other datasets for neural rendering, EPIC Fields removes the complex and expensive step of reconstructing cameras using photogrammetry, and allows researchers to focus on modelling problems. We illustrate the challenge of photogrammetry in egocentric videos of dynamic actions and propose innovations to address them. Compared to other neural rendering datasets, EPIC Fields is better tailored to video understanding because it is paired with labelled action segments and the recent VISOR segment annotations. To further motivate the community, we also evaluate two benchmark tasks in neural rendering and segmenting dynamic objects, with strong baselines that showcase what is not possible today. We also highlight the advantage of geometry in semi-supervised video object segmentations on the VISOR annotations. EPIC Fields reconstructs 96% of videos in EPIC-KITCHENS, registering 19M frames in 99 hours recorded in 45 kitchens, and is available from: http://epic-kitchens.github.io/epic-field

    2017 Robotic Instrument Segmentation Challenge

    Get PDF
    In mainstream computer vision and machine learning, public datasets such as ImageNet, COCO and KITTI have helped drive enormous improvements by enabling researchers to understand the strengths and limitations of different algorithms via performance comparison. However, this type of approach has had limited translation to problems in robotic assisted surgery as this field has never established the same level of common datasets and benchmarking methods. In 2015 a sub-challenge was introduced at the EndoVis workshop where a set of robotic images were provided with automatically generated annotations from robot forward kinematics. However, there were issues with this dataset due to the limited background variation, lack of complex motion and inaccuracies in the annotation. In this work we present the results of the 2017 challenge on robotic instrument segmentation which involved 10 teams participating in binary, parts and type based segmentation of articulated da Vinci robotic instruments
    corecore