30,732 research outputs found

    Interaction between graphene and SiO2 surface

    Full text link
    With first-principles DFT calculations, the interaction between graphene and SiO2 surface has been analyzed by constructing the different configurations based on {\alpha}-quartz and cristobalite structures. The single layer graphene can stay stably on SiO2 surface is explained based on the general consideration of configuration structures of SiO2 surface. It is also found that the oxygen defect in SiO2 surface can shift the Fermi level of graphene down which opens out the mechanism of hole-doping effect of graphene absorbed on SiO2 surface observed in experiments.Comment: 17 pages, 7 figure

    Dissipative chaotic scattering

    Get PDF
    We show that weak dissipation, typical in realistic situations, can have a metamorphic consequence on nonhyperbolic chaotic scattering in the sense that the physically important particle-decay law is altered, no matter how small the amount of dissipation. As a result, the previous conclusion about the unity of the fractal dimension of the set of singularities in scattering functions, a major claim about nonhyperbolic chaotic scattering, may not be observable.Comment: 4 pages, 2 figures, revte

    Resummation Effects in Vector-Boson and Higgs Associated Production

    Get PDF
    Fixed-order QCD radiative corrections to the vector-boson and Higgs associated production channels, pp -> VH (V=W, Z), at hadron colliders are well understood. We combine higher order perturbative QCD calculations with soft-gluon resummation of both threshold logarithms and logarithms which are important at low transverse momentum of the VH pair. We study the effects of both types of logarithms on the scale dependence of the total cross section and on various kinematic distributions. The next-to-next-to-next-to-leading logarithmic (NNNLL) resummed total cross sections at the LHC are almost identical to the fixed-order perturbative next-to-next-to-leading order (NNLO) rates, indicating the excellent convergence of the perturbative QCD series. Resummation of the VH transverse momentum (p_T) spectrum provides reliable results for small values of p_T and suggests that implementing a jet-veto will significantly decrease the cross sections.Comment: 25 pages, references update

    Parity Violation in Neutrino Transport and the Origin of Pulsar Kicks

    Get PDF
    In proto-neutron stars with strong magnetic fields, the neutrino-nucleon scattering/absorption cross sections depend on the direction of neutrino momentum with respect to the magnetic field axis, a manifestation of parity violation in weak interactions. We study the deleptonization and thermal cooling (via neutrino emission) of proto-neutron stars in the presence of such asymmetric neutrino opacities. Significant asymmetry in neutrino emission is obtained due to multiple neutrino-nucleon scatterings. For an ordered magnetic field threading the neutron star interior, the fractional asymmetry in neutrino emission is about 0.006(B/1014G)0.006 (B/10^{14}G), corresponding to a pulsar kick velocity of about 200(B/1014G)200 (B/10^{14}G) km/s for a total radiated neutrino energy of 3×10533\times 10^{53} erg.Comment: AASTeX, 10 pages including 2 ps figures; ApJ Letter in press (March 10, 1998). Shortened to agree with the published versio

    Landing and catalytic characterization of individual nanoparticles on electrode surfaces

    Get PDF
    We demonstrate a novel and versatile pipet-based approach to study the landing of individual nanoparticles (NPs) on various electrode materials without any need for encapsulation or fabrication of complex substrate electrode structures, providing great flexibility with respect to electrode materials. Because of the small electrode area defined by the pipet dimensions, the background current is low, allowing for the detection of minute current signals with good time resolution. This approach was used to characterize the potential-dependent activity of Au NPs and to measure the catalytic activity of a single NP on a TEM grid, combining electrochemical and physical characterization at the single NP level for the first time. Such measurements open up the possibility of studying the relation between the size, structure and activity of catalyst particles unambiguously
    corecore