140 research outputs found
Cryogenic Microwave Imaging of Metal-Insulator Transition in Doped Silicon
We report the instrumentation and experimental results of a cryogenic
scanning microwave impedance microscope. The microwave probe and the scanning
stage are located inside the variable temperature insert of a helium cryostat.
Microwave signals in the distance modulation mode are used for monitoring the
tip-sample distance and adjusting the phase of the two output channels. The
ability to spatially resolve the metal-insulator transition in a doped silicon
sample is demonstrated. The data agree with a semi-quantitative finite-element
simulation. Effects of the thermal energy and electric fields on local charge
carriers can be seen in the images taken at different temperatures and DC
biases.Comment: 10 pages, 5 Figures, Accepted to Review of Scientific Instrumen
Ultra-thin Topological Insulator Bi2Se3 Nanoribbons Exfoliated by Atomic Force Microscopy
Ultra-thin topological insulator nanostructures, in which coupling between
top and bottom surface states takes place, are of great intellectual and
practical importance. Due to the weak Van der Waals interaction between
adjacent quintuple layers (QLs), the layered bismuth selenide (Bi2Se3), a
single Dirac-cone topological insulator with a large bulk gap, can be
exfoliated down to a few QLs. In this paper, we report the first controlled
mechanical exfoliation of Bi2Se3 nanoribbons (> 50 QLs) by an atomic force
microscope (AFM) tip down to a single QL. Microwave impedance microscopy is
employed to map out the local conductivity of such ultra-thin nanoribbons,
showing drastic difference in sheet resistance between 1~2 QLs and 4~5 QLs.
Transport measurement carried out on an exfoliated (\leq 5 QLs) Bi2Se3 device
shows non-metallic temperature dependence of resistance, in sharp contrast to
the metallic behavior seen in thick (> 50 QLs) ribbons. These AFM-exfoliated
thin nanoribbons afford interesting candidates for studying the transition from
quantum spin Hall surface to edge states
Energy-resolved Photoconductivity Mapping in a Monolayer-bilayer WSe2 Lateral Heterostructure
Vertical and lateral heterostructures of van der Waals materials provide
tremendous flexibility for band structure engineering. Since electronic bands
are sensitively affected by defects, strain, and interlayer coupling, the edge
and heterojunction of these two-dimensional (2D) systems may exhibit novel
physical properties, which can be fully revealed only by spatially resolved
probes. Here, we report the spatial mapping of photoconductivity in a
monolayer-bilayer WSe2 lateral heterostructure under multiple excitation
lasers. As the photon energy increases, the light-induced conductivity detected
by microwave impedance microscopy first appears along the hetero-interface and
bilayer edge, then along the monolayer edge, inside the bilayer area, and
finally in the interior of the monolayer region. The sequential emergence of
mobile carriers in different sections of the sample is consistent with the
theoretical calculation of local energy gaps. Quantitative analysis of the
microscopy and transport data also reveals the linear dependence of
photoconductivity on the laser intensity and the influence of interlayer
coupling on carrier recombination. Combining theoretical modeling, atomic scale
imaging, mesoscale impedance microscopy, and device-level characterization, our
work suggests an exciting perspective to control the intrinsic band-gap
variation in 2D heterostructures down to the few-nanometer regime.Comment: 18 pages, 5 figures; Nano Lett., Just Accepted Manuscrip
Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators
Acoustic or mechanical resonators have emerged as a promising means to mediate efficient microwave-to-optical conversion. Here, we demonstrate conversion of microwaves up to 4.5 GHz in frequency to 1500 nm wavelength light using optomechanical interactions on suspended thin-film lithium niobate. Our method uses an interdigital transducer that drives a freestanding 100 μm-long thin-film acoustic resonator to modulate light traveling in a Mach–Zehnder interferometer or racetrack cavity. The strong microwave-to-acoustic coupling offered by the transducer in conjunction with the strong photoelastic, piezoelectric, and electro-optic effects of lithium niobate allows us to achieve a half-wave voltage of Vπ = 4.6 V and Vπ = 0.77 V for the Mach–Zehnder interferometer and racetrack resonator, respectively. The acousto-optic racetrack cavity exhibits an optomechanical single-photon coupling strength of 1.1 kHz. To highlight the versatility of our system, we also demonstrate a microwave photonic link with unitary gain, which refers to a 0 dB microwave power transmission over an optical channel. Our integrated nanophotonic platform, which leverages the compelling properties of lithium niobate, could help enable efficient conversion between microwave and optical fields
- …
