37 research outputs found

    Live Birth from the Transfer of a Severely Fragmented Embryo Observed by Morphokinetics

    No full text
    We report a live birth from a heavily fragmented embryo which continued cleavage to a fully expanded blastocyst. A 32-year-old patient underwent 2 IVF cycles without achieving pregnancy. In the first cycle, 2 embryos with fragmentation were transferred; in the second, all embryos were fragmented and no embryo transfer was performed. In a third cycle, 12 oocytes were retrieved and 11 of them were fertilized. On day 2, all 11 embryos started to unwind to fragments. By careful annotation, using the time-lapse EmbryoScope, we observed that one embryo continued division as expected, discarding all fragments aside. On day 5, this embryo showed promising annotation according to our lab model. The embryo was transferred into the uterus and resulted in the birth of a healthy baby at term. To our knowledge, this is the first case report assisted by EmbryoScope where a healthy baby was delivered from a fragmented embryo

    Inhibitory factors associated with anaphase-promoting complex/cylosome in mitotic checkpoint

    No full text
    The mitotic (or spindle assembly) checkpoint system ensures accurate chromosome segregation by preventing anaphase initiation until all chromosomes are correctly attached to the mitotic spindle. It affects the activity of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets inhibitors of anaphase initiation for degradation. The mechanisms by which this system regulates APC/C remain obscure. Some models propose that the system promotes sequestration of the APC/C activator Cdc20 by binding to the checkpoint proteins Mad2 and BubR1. A different model suggests that a mitotic checkpoint complex (MCC) composed of BubR1, Bub3, Cdc20, and Mad2 inhibits APC/C in mitotic checkpoint [Sudakin V, Chan GKT, Yen TJ (2001) J Cell Biol 154:925–936]. We examined this problem by using extracts from nocodazole-arrested cells that reproduce some downstream events of the mitotic checkpoint system, such as lag kinetics of the degradation of APC/C substrate. Incubation of extracts with adenosine-5′-(γ-thio)triphosphate (ATP[γS]) stabilized the checkpoint-arrested state, apparently by stable thiophosphorylation of some proteins. By immunoprecipitation of APC/C from stably checkpoint-arrested extracts, followed by elution with increased salt concentration, we isolated inhibitory factors associated with APC/C. A part of the inhibitory material consists of Cdc20 associated with BubR1 and Mad2, and is thus similar to MCC. Contrary to the original MCC hypothesis, we find that MCC disassembles upon exit from the mitotic checkpoint. Thus, the requirement of the mitotic checkpoint system for the binding of Mad2 and BubR1 to Cdc20 may be for the assembly of the inhibitory complex rather than for Cdc20 sequestration

    Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells

    No full text
    The forkhead transcription factor FOXO1, a downstream target of phosphatidylinositol-3-kinase/Akt signalling pathway, regulates cyclic differentiation and apoptosis in normal endometrium, but its role in endometrial carcinogenesis is unknown. Screening of endometrial cancer cell lines demonstrated that FOXO1 is expressed in HEC-1B cells, but not in Ishikawa cells, which in turn highly express the FOXO1 targeting E3-ubiquitin ligase Skp2. FOXO1 transcript levels were also lower in Ishikawa cells and treatment with the proteasomal inhibitor was insufficient to restore expression. Lack of FOXO1 expression in Ishikawa cells was not accounted for by differential promoter methylation or activity, but correlated with increased messenger RNA (mRNA) turnover. Comparative analysis demonstrated that HEC-1B cells proliferate slower, but are more resistant to paclitaxel-mediated cell death than Ishikawa cells, which were partially reversed upon silencing of FOXO1 in HEC-1B cells or its re-expression in Ishikawa cells. We further show that FOXO1 is required for the expression of the growth arrest- and DNA-damage-inducible gene GADD45α. Analysis of biopsy samples demonstrated a marked loss of FOXO1 and GADD45α mRNA and protein expression in endometrioid endometrial cancer compared to normal endometrium. Together, these observations suggest that loss of FOXO1 perturbs endometrial homeostasis, promotes uncontrolled cell proliferation and increases susceptibility to genotoxic insults
    corecore