1,560 research outputs found
Transport properties and structures of vortex matter in layered superconductors
In this paper we analyze the structure, phase transitions and some transport
properties of the vortex system when the external magnetic field lies parallel
to the planes in layered superconductors. We show that experimental results for
resistivity are qualitatively consistent with numerical simulations that
describe the melting of a commensurate rotated lattice. However for some
magnetic fields, the structure factor indicates the occurrence of smectic peaks
at an intermediate temperature regime.Comment: 8 pages, 8 eps figure
Compelled to do the right thing
We use a model of opinion formation to study the consequences of some
mechanisms attempting to enforce the right behaviour in a society. We start
from a model where the possible choices are not equivalent (such is the case
when the agents decide to comply or not with a law) and where an imitation
mechanism allow the agents to change their behaviour based on the influence of
a group of partners. In addition, we consider the existence of two social
constraints: a) an external authority, called monitor, that imposes the correct
behaviour with infinite persuasion and b) an educated group of agents that act
upon their fellows but never change their own opinion, i.e., they exhibit
infinite adamancy. We determine the minimum number of monitors to induce an
effective change in the behaviour of the social group, and the size of the
educated group that produces the same effect. Also, we compare the results for
the cases of random social interactions and agents placed on a network. We have
verified that a small number of monitors are enough to change the behaviour of
the society. This also happens with a relatively small educated group in the
case of random interactions.Comment: 8 pages, 9 figures, submitted to EPJ
Physical consequences of PNP and the DMRG-annealing conjecture
Computational complexity theory contains a corpus of theorems and conjectures
regarding the time a Turing machine will need to solve certain types of
problems as a function of the input size. Nature {\em need not} be a Turing
machine and, thus, these theorems do not apply directly to it. But {\em
classical simulations} of physical processes are programs running on Turing
machines and, as such, are subject to them. In this work, computational
complexity theory is applied to classical simulations of systems performing an
adiabatic quantum computation (AQC), based on an annealed extension of the
density matrix renormalization group (DMRG). We conjecture that the
computational time required for those classical simulations is controlled
solely by the {\em maximal entanglement} found during the process. Thus, lower
bounds on the growth of entanglement with the system size can be provided. In
some cases, quantum phase transitions can be predicted to take place in certain
inhomogeneous systems. Concretely, physical conclusions are drawn from the
assumption that the complexity classes {\bf P} and {\bf NP} differ. As a
by-product, an alternative measure of entanglement is proposed which, via
Chebyshev's inequality, allows to establish strict bounds on the required
computational time.Comment: Accepted for publication in JSTA
Universality Classes of Diagonal Quantum Spin Ladders
We find the classification of diagonal spin ladders depending on a
characteristic integer in terms of ferrimagnetic, gapped and critical
phases. We use the finite algorithm DMRG, non-linear sigma model and
bosonization techniques to prove our results. We find stoichiometric contents
in cuprate planes that allow for the existence of weakly interacting
diagonal ladders.Comment: REVTEX4 file, 3 color figures, 1 tabl
Why, when, and how fast innovations are adopted
When the full stock of a new product is quickly sold in a few days or weeks,
one has the impression that new technologies develop and conquer the market in
a very easy way. This may be true for some new technologies, for example the
cell phone, but not for others, like the blue-ray. Novelty, usefulness,
advertising, price, and fashion are the driving forces behind the adoption of a
new product. But, what are the key factors that lead to adopt a new technology?
In this paper we propose and investigate a simple model for the adoption of an
innovation which depends mainly on three elements: the appeal of the novelty,
the inertia or resistance to adopt it, and the interaction with other agents.
Social interactions are taken into account in two ways: by imitation and by
differentiation, i.e., some agents will be inclined to adopt an innovation if
many people do the same, but other will act in the opposite direction, trying
to differentiate from the "herd". We determine the conditions for a successful
implantation of the new technology, by considering the strength of advertising
and the effect of social interactions. We find a balance between the
advertising and the number of anti-herding agents that may block the adoption
of a new product. We also compare the effect of social interactions, when
agents take into account the behavior of the whole society or just a part of
it. In a nutshell, the present model reproduces qualitatively the available
data on adoption of innovation.Comment: 11 pages, 13 figures (with subfigures), full paper (EPJB 2012) on
innovation adoption mode
Investigation of Graded La2NiO4+ Cathodes to Improve SOFC Electrochemical Performance
Mixed ionic and electronic conducting MIEC oxides are promising materials for use as cathodes in solid oxide fuel cells SOFCs due to their enhanced electrocatalytic activity compared with electronic conducting oxides. In this paper, the MIEC oxide La2NiO4+ was prepared by the sol-gel route. Graded cathodes were deposited onto yttria-stabilized zirconia YSZ pellets by dip-coating, and electrochemical impedance spectroscopy studies were performed to characterize the symmetrical cell performance. By adapting the slurries, cathode layers with different porosities and thicknesses were obtained. A ceria gadolinium oxide CGO barrier layer was introduced, avoiding insulating La2Zr2O7 phase formation and thus reducing resistance polarization of the cathode. A systematic correlation between microstructure, composition, and electrochemical performance of these cathodes has been performed. An improvement of the electrochemical performance has been demonstrated, and a reduction in the area specific resistance ASR by a factor of 4.5 has been achieved with a compact interlayer of La2NiO4+ between the dense electrolyte and the porous La2NiO4+ cathode layer. The lowest observed ASR of 0.11 cm2 at 800°C was obtained from a symmetrical cell composed of a YSZ electrolyte, a CGO interlayer, an intermediate compact La2NiO4+ layer, a porous La2NiO4+ electrode layer, and a current collection layer of platinum paste
- …