3 research outputs found

    Age-Related Differences in Functional and Structural Connectivity in the Spatial Navigation Brain Network

    Get PDF
    International audienceSpatial navigation involves multiple cognitive processes including multisensory integration, visuospatial coding, memory, and decision-making. These functions are mediated by the interplay of cerebral structures that can be broadly separated into a posterior network (subserving visual and spatial processing) and an anterior network (dedicated to memory and navigation planning). Within these networks, areas such as the hippocampus (HC) are known to be affected by aging and to be associated with cognitive decline and navigation impairments. However, age-related changes in brain connectivity within the spatial navigation network remain to be investigated. For this purpose, we performed a neuroimaging study combining functional and structural connectivity analyses between cerebral regions involved in spatial navigation. Nineteen young (μ = 27 years, σ = 4.3; 10 F) and 22 older (μ = 73 years, σ = 4.1; 10 F) participants were examined in this study. Our analyses focused on the parahippocampal place area (PPA), the retrosplenial cortex (RSC), the occipital place area (OPA), and the projections into the visual cortex of central and peripheral visual fields, delineated from independent functional localizers. In addition, we segmented the HC and the medial prefrontal cortex (mPFC) from anatomical images. Our results show an age-related decrease in functional connectivity between low-visual areas and the HC, associated with an increase in functional connectivity between OPA and PPA in older participants compared to young subjects. Concerning the structural connectivity, we found age-related differences in white matter integrity within the navigation brain network, with the exception of the OPA. The OPA is known to be involved in egocentric navigation, as opposed to allocentric strategies which are more related to the hippocampal region. The increase in functional connectivity between the OPA and PPA may thus reflect a compensatory mechanism for the age-related alterations around the HC, favoring the use of the preserved structural network mediating egocentric navigation. Overall, these findings on age-related differences of functional and structural connectivity may help to elucidate the cerebral bases of spatial navigation deficits in healthy and pathological aging

    Inelastic and quasi-elastic neutron scattering. Application to soft-matter

    No full text
    Microscopic dynamical events control many of the physical processes at play in condensed matter: transport, magnetism, catalysis and even function of biological assemblies. Inelastic (INS) and Quasi-Elastic Neutron Scattering (QENS) are irreplaceable probes of these phenomena. These experimental techniques reveal the displacements of atoms and molecules over distances spanning from angstroms to a few tens of nanometers, on time scales ranging from a fraction of picoseconds to microseconds. In this context, the different INS and QENS machines (Time-of-Flight (ToF), Backscattering (BS) and Neutron spin-echo (NSE)) stand at a central position. After introducing an underlying basic theoretical toolbox for neutron scattering, the principles and key elements of a ToF measurement are described. While, here, we mainly focus on disk choppers spectrometers, all the INS/QENS instruments share a common ground: they directly and simultaneously probe correlation functions in both time and space, so that the scattering vector (Q) dependence of the systems characteristic time(s) can be measured. To illustrate, the potentialities of the technique in the field of soft-matter, we show a multiscale approach of the dynamics of a polymer melt. The system is probed from the molecular to the mesoscopic scale (1 ps to 0.6 μs and 0.1 to 40 nm), in bulk and under nanometric confinement. We address the different dynamical modes of a high mass entangled polymer chain: local monomer dynamics, Rouse modes up to the reptation process. This study exemplifies that, used in conjunction with hydrogen/deuterium isotopic effects, high resolution QENS can be bridged to the Zero Average Contrast (ZAC) method to probe, in a non destructive way, the dynamics of a single polymer chain in bulk but also under severe nanometric confinement. Connection and complementarity of the neutron derived analysis with Pulsed-Field Gradient and Relaxation NMR techniques are discussed

    Inelastic and quasi-elastic neutron scattering. Application to soft-matter

    No full text
    Microscopic dynamical events control many of the physical processes at play in condensed matter: transport, magnetism, catalysis and even function of biological assemblies. Inelastic (INS) and Quasi-Elastic Neutron Scattering (QENS) are irreplaceable probes of these phenomena. These experimental techniques reveal the displacements of atoms and molecules over distances spanning from angstroms to a few tens of nanometers, on time scales ranging from a fraction of picoseconds to microseconds. In this context, the different INS and QENS machines (Time-of-Flight (ToF), Backscattering (BS) and Neutron spin-echo (NSE)) stand at a central position. After introducing an underlying basic theoretical toolbox for neutron scattering, the principles and key elements of a ToF measurement are described. While, here, we mainly focus on disk choppers spectrometers, all the INS/QENS instruments share a common ground: they directly and simultaneously probe correlation functions in both time and space, so that the scattering vector (Q) dependence of the systems characteristic time(s) can be measured. To illustrate, the potentialities of the technique in the field of soft-matter, we show a multiscale approach of the dynamics of a polymer melt. The system is probed from the molecular to the mesoscopic scale (1 ps to 0.6 μs and 0.1 to 40 nm), in bulk and under nanometric confinement. We address the different dynamical modes of a high mass entangled polymer chain: local monomer dynamics, Rouse modes up to the reptation process. This study exemplifies that, used in conjunction with hydrogen/deuterium isotopic effects, high resolution QENS can be bridged to the Zero Average Contrast (ZAC) method to probe, in a non destructive way, the dynamics of a single polymer chain in bulk but also under severe nanometric confinement. Connection and complementarity of the neutron derived analysis with Pulsed-Field Gradient and Relaxation NMR techniques are discussed
    corecore