7 research outputs found

    SiF4 anomalous behaviour reassessed

    Get PDF
    The Si 1s−1, Si 2s−1, and Si 2p−1 photoelectron spectra of the SiX4 molecules with X = F, Cl, Br, CH3 were measured. From these spectra the Si 1s−1 and Si 2s−1 lifetime broadenings were determined, revealing a significantly larger value for the Si 2s−1 core hole of SiF4 than for the same core hole of the other molecules of the sequence. This finding is in line with the results of the Si 2p−1 core holes of a number of SiX4 molecules, with an exceptionally large broadening for SiF4. For the Si 2s−1 core hole of SiF4 the difference to the other SiX4 molecules can be explained in terms of Interatomic Coulomb Decay (ICD)-like processes. For the Si 2p−1 core hole of SiF4 the estimated values for the sum of the Intraatomic Auger Electron Decay (IAED) and ICD-like processes are too small to explain the observed linewidth. However, the results of the given discussion render for SiF4 significant contributions from Electron Transfer Mediated Decay (ETMD)-like processes at least plausible. On the grounds of our results, some more molecular systems in which similar processes can be observed are identified

    Destruction and multiple ionization of PAHs by X-rays in circumnuclear regions of AGNs

    Get PDF
    The infrared signatures of polycyclic aromatic hydrocarbons (PAHs) are observed in a variety of astrophysical objects, including the circumnuclear medium of active galactic nuclei (AGNs). These are sources of highly energetic photons (0.2 to 10 keV), exposing the PAHs to a harsh environment. In this work, we examined experimentally the photoionization and photostability of naphthalene (C10_{10}H8_{8}), anthracene (C14_{14}H10_{10}), 2-methyl-anthracene (C14_{14}H9_{9}CH3_{3}) and pyrene (C16_{16}H10_{10}) upon interaction with photons of 275, 310 and 2500 eV. The measurements were performed at the Brazilian Synchrotron Light Laboratory using time-of-flight mass-spectrometry (TOF-MS). We determined the absolute photoionization and photodissociation cross sections as a function of the incident photon energy; the production rates of singly, doubly and triply charged ions; and the molecular half-lives in regions surrounding AGNs. Even considering moderate X-ray optical depth values (τ=4.45\tau = 4.45) due to attenuation by the dusty torus, the half-lives are not long enough to account for PAH detection. Our results suggest that a more sophisticated interplay between PAHs and dust grains should be present in order to circumvent molecular destruction. We could not see any significant difference in the half-life values by increasing the size of the PAH carbon backbone, NC_C, from 10 to 16. However, we show that the multiple photoionization rates are significantly greater than the single ones, irrespective of the AGN source. We suggest that an enrichment of multiply charged ions caused by X-rays can occur in AGNs.Comment: 20 pages (appendix: 3 pages), 10 figures, 4 tables. Accepted for publication in the Montly Notices of the Royal Astronomical Society (MNRAS). Accepted 2019 April

    Argon KLL Auger spectrum: Initial states, core-hole lifetimes, shake, and knock-down processes

    Get PDF
    State-of-the-art argon KLL Auger spectra measured using photon energies of hÎœ=3216 and 3400 eV are presented along with an Ar [1s] photoelectron spectrum (square brackets indicate holes in the respective orbital). The two different photon energies used for measuring the Auger spectra allow distinguishing between the shake transitions during the Auger decay and the Auger transitions of the photoelectron satellites. A complete assignment of satellite transitions is provided, partially based on configuration-interaction calculations. In addition, Ar [1s3(s,p)]nâ€Člâ€Č→[2p2(1D2)] transitions are observed, which can be explained by knock-down transitions leading to a direct exchange of angular momentum between the excited electron and the Auger electron. The lifetime broadenings of the Ar [2s] single-core-hole state and the [2s2] and [2s2p] double-core-hole states are also determined, confirming previously observed trends for double-core-hole states

    Excitation and ionic fragmentation of gas-phase biomolecules using electrons and synchrotron radiation

    No full text
    An experimental study of the electronic excitation and ionic dissociation of two important classes of biomolecules-natural products (biogenic volatile organic compounds, VOCs, and volatile components of essential oils) and DNA and RNA constituents (aminoacids and bases) is here exemplified with recent results on the fragmentation of thymine and isoprene as induced by synchrotron radiation and fast electrons. Fragmentation of the thymine molecule was seen to dramatically increase as the photon energy increased from 21 to 300 eV and 450 eV. At the highest photon energy, simply and doubly charged N and O atoms were observed. The parent ion (m/z = 126) could be observed at all photon energies. The fragmentation pattern observed in the 1.0 keV electron impact mass spectrum of thymine resembled more closely the fragmentation observed with 21 eV photons. In isoprene, the dominant fragments observed at 21 eV and 310 eV photon energy as well as in the 1.0 keV electron impact mass spectrum were C5H 7+(m/z = 67), C4H5+(m/z = 53), C3H3+(m/z = 39) and C2H 3+(m/z = 27). Previously unreported fragments, namely H+, C+, CH+, CH2+, and CH3+ were observed at the high photon energies and at the electron impact mass spectrum. © 2007 IOP Publishing Ltd

    C 1s] photoionization

    No full text
    Photoionization of the limonene [C10H16] molecule was studied for the first time following C 1s ionization, using synchrotron radiation and time-of-fight mass spectrometry. As a reference for further analysis of the photon induced fragmentation of the limonene molecule, the He(I) mass spectrum was also obtained. Previously unreported singly charged species have been observed at 310 eV: H+, C+, CH+, CH2 +, CH3 +. A close similarity has been observed between the high photon energy mass spectrum and the standard electron impact mass spectrum of limonene, obtained at 70 eV. In particular, the base peak [C5H8 +, m/q = 68], known to result from a Retro Diels-Alder reaction, remains the same in both cases. Approximate values for the mean kinetic energy were determined for all ionic species. © 2006 Elsevier B.V. All rights reserved

    Single and double ionization of the camphor molecule excited around the C 1s edge

    No full text
    RATIONALE An interesting class of volatile compounds, the monoterpenes, is present in some plants although their functions are not yet fully understood. We have studied the interaction of the camphor molecule with monochromatic high-energy photons (synchrotron radiation) using time-of-flight mass spectrometry and coincidence techniques. METHODS A commercial sample of S-camphor was admitted into the vacuum chamber, without purification, through an inlet system. Monochromatic light with energy around the C 1s edge was generated by the TGM beamline at the Brazilian Synchrotron Facility. A Wiley-McLaren mass spectrometer was used to characterize and detect the ions formed by the camphor photoionization. The data analysis was supported by energy calculations. RESULTS Although the fragmentation patterns were basically the same at 270 eV and 330 eV, it was observed that above the C 1s edge the contribution to the spectrum from lower mass/charge fragment ions increased, pointing to a higher degree of dissociation of the molecule. Projections of the PEPIPICO spectra demonstrated the existence of unstable doubly charged species. The Gibbs free energy was calculated using the MÞller-Plesset perturbation theory (MP2) for the neutral, singly and doubly excited camphor molecule. CONCLUSIONS Our PEPIPICO spectrum clearly demonstrated the formation of doubly ionic dissociative species. From a slope analysis, we propose a secondary decay after a deferred charge separation mechanism in which, after a few steps, the camphor dication dissociates into C2H3 + and C3H5+. This is the main relaxation route observed at 270 eV and 330 eV. The large energy difference between the mono and the dication (of the order of 258.2 kcal/mol) may explain the experimentally observed absence of stable dications in the spectra, because their formation is disadvantaged energetically. Copyright © 2014 John Wiley & Sons, Ltd

    Excitation and ionic fragmentation of the carvone molecule (C 10H14O) around the O 1s edge

    No full text
    The electronic excitation and associated ionic dissociation of the carvone molecule have been studied around the oxygen 1s edge, using synchrotron radiation and time-of-flight techniques. Photoabsorption spectrum (total ion yield) and mass spectra have been obtained in the range between 520 and 545 eV. For the sake of comparison, carvone mass spectra have also been obtained following valence (21.21 eV) and core (carbon 1s) ionization. Fragmentation of the molecule is seen to be greatly enhanced following core excitation. Around the oxygen 1s edge, we observe an extensive fragmentation of the molecular skeleton, as exemplified by the appearance of several previously unreported ions: H+, H2+, CH+, CH 2+ and CH3+, which are not formed at low energies. A maximum is observed at 536 eV photon energy in the relative intensity of the oxygen-containing ions O+, O2+ and OH+, as an evidence for the existence of site-selective fragmentation of the carvone molecule excited around the O 1s edge. Absolute values for the photoionization and photodissociation cross sections were estimated using the molecular additive rule. © 2014 Elsevier B.V
    corecore