86 research outputs found

    Thermally Stimulated Conductivity in (Ba:Sr)S04 Phosphos

    Get PDF

    Viral and bacterial etiology of severe acute respiratory illness among children < 5 years of age without influenza in Niger.

    Get PDF
    International audienceGlobally, pneumonia is the leading cause of morbidity and mortality in children, with the highest burden experienced in sub-Saharan Africa and Asia. However, there is a dearth of information on the etiology of severe acute respiratory illness (SARI) in Africa, including Niger. We implemented a retrospective study as part of national influenza sentinel surveillance in Niger. We randomly selected a sample of nasopharyngeal specimens collected from children <5 years of age hospitalized with SARI from January 2010 through December 2012 in Niger. The samples were selected from individuals that tested negative by real-time reverse transcription polymerase chain reaction (rRT-PCR) for influenza A and B virus. The samples were analyzed using the Fast Track Diagnostic Respiratory Pathogens 21plus Kit (BioMérieux, Luxemburg), which detects 23 respiratory pathogens including 18 viral and 5 bacterial agents. Among the 160 samples tested, 138 (86%) tested positive for at least one viral or bacterial pathogen; in 22 (16%) sample, only one pathogen was detected. We detected at least one respiratory virus in 126 (78%) samples and at least one bacterium in 102 (64%) samples. Respiratory syncytial virus (56/160; 35%), rhinovirus (47/160; 29%) and parainfluenza virus (39/160; 24%) were the most common viral pathogens detected. Among bacterial pathogens, Streptococcus pneumoniae (90/160; 56%) and Haemophilus influenzae type b (20/160; 12%) predominated. The high prevalence of certain viral and bacterial pathogens among children <5 years of age with SARI highlights the need for continued and expanded surveillance in Niger

    The epidemiology of seasonal influenza after the 2009 influenza pandemic in Africa: a systematic review

    Get PDF
    Background: Influenza infection is a serious public health problem that causes an estimated 3 to 5 million cases and 250,000 deaths worldwide every year. The epidemiology of influenza is well-documented in high- and middle-income countries, however minimal effort had been made to understand the epidemiology, burden and seasonality of influenza in Africa. This study aims to assess the state of knowledge of seasonal influenza epidemiology in Africa and identify potential data gaps for policy formulation following the 2009 pandemic. Method: We reviewed articles from Africa published into four databases namely: MEDLINE (PubMed), Google Scholar, Cochrane Library and Scientific Research Publishing from 2010 to 2019. Results: We screened titles and abstracts of 2070 studies of which 311 were selected for full content evaluation and 199 studies were considered. Selected articles varied substantially on the basis of the topics they addressed covering the field of influenza surveillance (n=80); influenza risk factors and co-morbidities (n=15); influenza burden (n=37); influenza vaccination (n=40); influenza and other respiratory pathogens (n=22) and influenza diagnosis (n=5). Conclusion: Significant progress has been made since the last pandemic in understanding the influenza epidemiology in Africa. However, efforts still remain for most countries to have sufficient data to allow countries to prioritize strategies for influenza prevention and control

    Study of α-transfer reaction 28Si( 7Li, t) 32S

    Get PDF
    The 28Si( 7Li, t) 32S reaction has been studied at 48 MeV. Using a αt potential overlap based on a microscopic cluster model, the full finite-range distorted wave Born approximation analysis was carried out for nine low-lying states; 0.0 MeV (0+), 2.23 MeV (2+), 3.78 MeV (0+), 4.46 MeV (4+), 5.01 MeV (3-), 5.80 MeV (1-), 6.76 MeV (3-), 7.43 MeV (1-) and 8.49 MeV (1-) of the residual nucleus. A re-analysis was also done for the same states of 32S having an αd overlap for the reaction 28Si (6Li, d) 32S at 75.6 MeV. Theoretical spectroscopic factors have been calculated for the measured even-parity states of 32S using the shell model code OXBASH. The spectroscopic factors were compared for both the reactions

    A framework for the practical development of condition monitoring systems with application to the roller compactor

    Get PDF
    Implementing a condition-based maintenance strategy requires an effective condition monitoring (CM) system that can be complicated to develop and even harder to maintain. In this paper, we review the main complexities of developing condition monitoring systems and introduce a four-stage framework that can address some of these difficulties. The framework achieves this by first using process knowledge to create a representation of the process condition. This representation can be broken down into simpler modules, allowing existing monitoring systems to be mapped to their corresponding module. Data-driven models such as machine learning models could then be used to train the modules that do not have existing CM systems. Even though data-driven models tend to not perform well with limited data, which is commonly the case in the early stages of pharmaceutical process development, application of this framework to a pharmaceutical roller compaction unit shows that the machine learning models trained on the simpler modules can make accurate predictions with novel fault detection capabilities. This is attributed to the incorporation of process knowledge to distill the process signals to the most important ones vis-à-vis the faults under consideration. Furthermore, the framework allows the holistic integration of these modular CM systems, which further extend their individual capabilities by maintaining process visibility during sensor maintenance

    Improvised Centrifugal Spinning for the Production of Polystyrene Microfibers From Waste Expanded Polystyrene Foam and Its Potential Application for Oil Adsorption

    Get PDF
    A straightforward approach to recycle waste expanded polystyrene (EPS) foam to produce polystyrene (PS) microfibers using the improvised centrifugal spinning technique is demonstrated in this work. A typical benchtop centrifuge was improvised and used as a centrifugal spinning device. The obtained PS microfibers were characterized for their potential application for oil adsorption. Fourier transform infrared spectroscopy results revealed similarity on the transmission bands of EPS foam and PS microfibers suggesting the preservation of the EPS foam’s chemical composition after the centrifugal spinning process. Scanning electron microscopy displayed well-defined fibers with an average diameter of 3.14 ± 0.59 μm. At the same time, energy dispersive X-ray spectroscopy revealed the presence of carbon and oxygen as the primary components of the fibers. Contact angle (θCA) measurements showed the more enhanced hydrophobicity of the PS microfiber (θCA = 100.2 ± 1.3°) compared to the untreated EPS foam (θCA = 92.9 ± 3.5°). The PS microfiber also displayed better oleophilicity compared to EPS foam. Finally, the fabricated PS microfibers demonstrated promising potential for oil removal in water with a calculated sorption capacity value of about 15.5 g/g even at a very short contact time. The fabricated PS fiber from the waste EPS foam may provide valuable insights into the valorization of polymeric waste materials for environmental and other related applications

    Influenza surveillance capacity improvements in Africa during 2011-2017.

    Get PDF
    BACKGROUND: Influenza surveillance helps time prevention and control interventions especially where complex seasonal patterns exist. We assessed influenza surveillance sustainability in Africa where influenza activity varies and external funds for surveillance have decreased. METHODS: We surveyed African Network for Influenza Surveillance and Epidemiology (ANISE) countries about 2011-2017 surveillance system characteristics. Data were summarized with descriptive statistics and analyzed with univariate and multivariable analyses to quantify sustained or expanded influenza surveillance capacity in Africa. RESULTS: Eighteen (75%) of 24 ANISE members participated in the survey; their cumulative population of 710 751 471 represent 56% of Africa's total population. All 18 countries scored a mean 95% on WHO laboratory quality assurance panels. The number of samples collected from severe acute respiratory infection case-patients remained consistent between 2011 and 2017 (13 823 vs 13 674 respectively) but decreased by 12% for influenza-like illness case-patients (16 210 vs 14 477). Nine (50%) gained capacity to lineage-type influenza B. The number of countries reporting each week to WHO FluNet increased from 15 (83%) in 2011 to 17 (94%) in 2017. CONCLUSIONS: Despite declines in external surveillance funding, ANISE countries gained additional laboratory testing capacity and continued influenza testing and reporting to WHO. These gains represent important achievements toward sustainable surveillance and epidemic/pandemic preparedness
    corecore