141 research outputs found

    An open vibration platform to evaluate postural control using a simple reinforcement learning agent

    Get PDF
    In this paper, our research team proposes an inexpensive open vibration platform built from easily available electronic components to be used as a tool by physiotherapists in order to help them in their evaluation of the postural control of individuals at risk of postural imbalance which could lead to falls. The platform has been thought to be easily reproducible and all the code necessary to make it work is made available on the researchers’ websites. In addition, a simple reinforcement learning agent has been developed and tested to automatically calibrate the vibration motors for optimal stimulation. Finally, we present in this paper pilot experiments done on 7 healthy participants (40.8 years old) to validate the proper functioning of the platform

    Nitrogen forms affect root structure and water uptake in the hybrid poplar

    Get PDF
    The study analyses the effects of two different forms of nitrogen fertilisation (nitrate and ammonium) on root structure and water uptake of two hybrid poplar (Populus maximowiczii x P. balsamifera) clones in a field experiment. Water uptake was studied using sap flow gauges on individual proximal roots and coarse root structure was examined by excavating 18 whole-root systems. Finer roots were scanned and analyzed for architecture. Nitrogen forms did not affect coarse-root system development, but had a significant effect on fine-root development. Nitrate-treated trees presented higher fine:coarse root ratios and higher specific root lengths than control or ammonium treated trees. These allocation differences affected the water uptake capacity of the plants as reflected by the higher sapflow rate in the nitrate treatment. The diameter of proximal roots at the tree base predicted well the total root biomass and length. The diameter of smaller lateral roots also predicted the lateral root mass, length, surface area and the number of tips. The effect of nitrogen fertilisation on the fine root structure translated into an effect on the functioning of the fine roots forming a link between form (architecture) and function (water uptake)

    Characterization of the Trans Watson-Crick GU Base Pair Located in the Catalytic Core of the Antigenomic HDV Ribozyme

    Get PDF
    The HDV ribozyme’s folding pathway is, by far, the most complex folding pathway elucidated to date for a small ribozyme. It includes 6 different steps that have been shown to occur before the chemical cleavage. It is likely that other steps remain to be discovered. One of the most critical of these unknown steps is the formation of the trans Watson-Crick GU base pair within loop III. The U23 and G28 nucleotides that form this base pair are perfectly conserved in all natural variants of the HDV ribozyme, and therefore are considered as being part of the signature of HDV-like ribozymes. Both the formation and the transformation of this base pair have been studied mainly by crystal structure and by molecular dynamic simulations. In order to obtain physical support for the formation of this base pair in solution, a set of experiments, including direct mutagenesis, the site-specific substitution of chemical groups, kinetic studies, chemical probing and magnesium-induced cleavage, were performed with the specific goal of characterizing this trans Watson-Crick GU base pair in an antigenomic HDV ribozyme. Both U23 and G28 can be substituted for nucleotides that likely preserve some of the H-bond interactions present before and after the cleavage step. The formation of the more stable trans Watson-Crick base pair is shown to be a post-cleavage event, while a possibly weaker trans Watson-Crick/Hoogsteen interaction seems to form before the cleavage step. The formation of this unusually stable post-cleavage base pair may act as a driving force on the chemical cleavage by favouring the formation of a more stable ground state of the product-ribozyme complex. To our knowledge, this represents the first demonstration of a potential stabilising role of a post-cleavage conformational switch event in a ribozyme-catalyzed reaction

    Distinct gene subsets in pterygia formation and recurrence: dissecting complex biological phenomenon using genome wide expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pterygium is a common ocular surface disease characterized by fibrovascular invasion of the cornea and is sight-threatening due to astigmatism, tear film disturbance, or occlusion of the visual axis. However, the mechanisms for formation and post-surgical recurrence of pterygium are not understood, and a valid animal model does not exist. Here, we investigated the possible mechanisms of pterygium pathogenesis and recurrence.</p> <p>Methods</p> <p>First we performed a genome wide expression analysis (human Affymetrix Genechip, >22000 genes) with principal component analysis and clustering techniques, and validated expression of key molecules with PCR. The controls for this study were the un-involved conjunctival tissue of the same eye obtained during the surgical resection of the lesions. Interesting molecules were further investigated with immunohistochemistry, Western blots, and comparison with tear proteins from pterygium patients.</p> <p>Results</p> <p>Principal component analysis in pterygium indicated a signature of matrix-related structural proteins, including fibronectin-1 (both splice-forms), collagen-1A2, keratin-12 and small proline rich protein-1. Immunofluorescence showed strong expression of keratin-6A in all layers, especially the superficial layers, of pterygium epithelium, but absent in the control, with up-regulation and nuclear accumulation of the cell adhesion molecule CD24 in the pterygium epithelium. Western blot shows increased protein expression of beta-microseminoprotein, a protein up-regulated in human cutaneous squamous cell carcinoma. Gene products of 22 up-regulated genes in pterygium have also been found by us in human tears using nano-electrospray-liquid chromatography/mass spectrometry after pterygium surgery. Recurrent disease was associated with up-regulation of sialophorin, a negative regulator of cell adhesion, and <it>never in mitosis a</it>-5, known to be involved in cell motility.</p> <p>Conclusion</p> <p>Aberrant wound healing is therefore a key process in this disease, and strategies in wound remodeling may be appropriate in halting pterygium or its recurrence. For patients demonstrating a profile of 'recurrence', it may be necessary to manage as a poorer prognostic case and perhaps, more adjunctive treatment after resection of the primary lesion.</p

    The non-coding transcriptome as a dynamic regulator of cancer metastasis.

    Get PDF
    Since the discovery of microRNAs, non-coding RNAs (NC-RNAs) have increasingly attracted the attention of cancer investigators. Two classes of NC-RNAs are emerging as putative metastasis-related genes: long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs). LncRNAs orchestrate metastatic progression through several mechanisms, including the interaction with epigenetic effectors, splicing control and generation of microRNA-like molecules. In contrast, snoRNAs have been long considered "housekeeping" genes with no relevant function in cancer. However, recent evidence challenges this assumption, indicating that some snoRNAs are deregulated in cancer cells and may play a specific role in metastasis. Interestingly, snoRNAs and lncRNAs share several mechanisms of action, and might synergize with protein-coding genes to generate a specific cellular phenotype. This evidence suggests that the current paradigm of metastatic progression is incomplete. We propose that NC-RNAs are organized in complex interactive networks which orchestrate cellular phenotypic plasticity. Since plasticity is critical for cancer cell metastasis, we suggest that a molecular interactome composed by both NC-RNAs and proteins orchestrates cancer metastasis. Interestingly, expression of lncRNAs and snoRNAs can be detected in biological fluids, making them potentially useful biomarkers. NC-RNA expression profiles in human neoplasms have been associated with patients' prognosis. SnoRNA and lncRNA silencing in pre-clinical models leads to cancer cell death and/or metastasis prevention, suggesting they can be investigated as novel therapeutic targets. Based on the literature to date, we critically discuss how the NC-RNA interactome can be explored and manipulated to generate more effective diagnostic, prognostic, and therapeutic strategies for metastatic neoplasms

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation

    Get PDF
    Box C/D snoRNAs are known to guide site-specific ribose methylation of ribosomal RNA. Here, we demonstrate a novel and unexpected role for box C/D snoRNAs in guiding 18S rRNA acetylation in yeast. Our results demonstrate, for the first time, that the acetylation of two cytosine residues in 18S rRNA catalyzed by Kre33 is guided by two orphan box C/D snoRNAs–snR4 and snR45 –not known to be involved in methylation in yeast. We identified Kre33 binding sites on these snoRNAs as well as on the 18S rRNA, and demonstrate that both snR4 and snR45 establish extended bipartite complementarity around the cytosines targeted for acetylation, similar to pseudouridylation pocket formation by the H/ACA snoRNPs. We show that base pairing between these snoRNAs and 18S rRNA requires the putative helicase activity of Kre33, which is also needed to aid early pre-rRNA processing. Compared to yeast, the number of orphan box C/D snoRNAs in higher eukaryotes is much larger and we hypothesize that several of these may be involved in base-modifications
    • 

    corecore