458 research outputs found
How to test SME with space missions ?
In this communication, we focus on possibilities to constrain SME
coefficients using Cassini and Messenger data. We present simulations of
radioscience observables within the framework of the SME, identify the linear
combinations of SME coefficients the observations depend on and determine the
sensitivity of these measurements to the SME coefficients. We show that these
datasets are very powerful for constraining SME coefficients.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, June 17-21, 2013. 4 pages, 1 figur
Testing Gravitation in the Solar System with Radio Science experiments
The laws of gravitation have been tested for a long time with steadily
improving precision, leading at some moment of time to paradigmatic evolutions.
Pursuing this continual effort is of great importance for science. In this
communication, we focus on Solar System tests of gravity and more precisely on
possible tests that can be performed with radio science observations (Range and
Doppler). After briefly reviewing the current tests of gravitation at Solar
System scales, we give motivations to continue such experiments. In order to
obtain signature and estimate the amplitude of anomalous signals that could
show up in radio science observables because of modified gravitational laws, we
developed a new software that simulates Range/Doppler signals. We present this
new tool that simulates radio science observables directly from the space-time
metric. We apply this tool to the Cassini mission during its cruise from
Jupiter to Saturn and derive constraints on the parameters entering alternative
theories of gravity beyond the standard Parametrized Post Newtonian theory.Comment: proceedings of SF2A 2011 - minor changes (typos corrected -
references updated
Time-Varying Gravitomagnetism
Time-varying gravitomagnetic fields are considered within the linear
post-Newtonian approach to general relativity. A simple model is developed in
which the gravitomagnetic field of a localized mass-energy current varies
linearly with time. The implications of this temporal variation of the source
for the precession of test gyroscopes and the motion of null rays are briefly
discussed.Comment: 10 pages; v2: slightly expanded version accepted for publication in
Class. Quantum Gra
Classical motion in force fields with short range correlations
We study the long time motion of fast particles moving through time-dependent
random force fields with correlations that decay rapidly in space, but not
necessarily in time. The time dependence of the averaged kinetic energy and
mean-squared displacement is shown to exhibit a large degree of universality;
it depends only on whether the force is, or is not, a gradient vector field.
When it is, p^{2}(t) ~ t^{2/5} independently of the details of the potential
and of the space dimension. Motion is then superballistic in one dimension,
with q^{2}(t) ~ t^{12/5}, and ballistic in higher dimensions, with q^{2}(t) ~
t^{2}. These predictions are supported by numerical results in one and two
dimensions. For force fields not obtained from a potential field, the power
laws are different: p^{2}(t) ~ t^{2/3} and q^{2}(t) ~ t^{8/3} in all dimensions
d\geq 1
Accurate light-time correction due to a gravitating mass
This work arose as an aftermath of Cassini's 2002 experiment \cite{bblipt03},
in which the PPN parameter was measured with an accuracy
and found consistent with the prediction
of general relativity. The Orbit Determination Program (ODP) of
NASA's Jet Propulsion Laboratory, which was used in the data analysis, is based
on an expression for the gravitational delay which differs from the standard
formula; this difference is of second order in powers of -- the sun's
gravitational radius -- but in Cassini's case it was much larger than the
expected order of magnitude , where is the ray's closest approach
distance. Since the ODP does not account for any other second-order terms, it
is necessary, also in view of future more accurate experiments, to
systematically evaluate higher order corrections and to determine which terms
are significant. Light propagation in a static spacetime is equivalent to a
problem in ordinary geometrical optics; Fermat's action functional at its
minimum is just the light-time between the two end points A and B. A new and
powerful formulation is thus obtained. Asymptotic power series are necessary to
provide a safe and automatic way of selecting which terms to keep at each
order. Higher order approximations to the delay and the deflection are
obtained. We also show that in a close superior conjunction, when is much
smaller than the distances of A and B from the Sun, of order , say, the
second-order correction has an \emph{enhanced} part of order , which
corresponds just to the second-order terms introduced in the ODP. Gravitational
deflection of the image of a far away source, observed from a finite distance
from the mass, is obtained to .Comment: 4 figure
The Erpenbeck high frequency instability theorem for ZND detonations
The rigorous study of spectral stability for strong detonations was begun by
J.J. Erpenbeck in [Er1]. Working with the Zeldovitch-von Neumann-D\"oring (ZND)
model, which assumes a finite reaction rate but ignores effects like viscosity
corresponding to second order derivatives, he used a normal mode analysis to
define a stability function V(\tau,\eps) whose zeros in
correspond to multidimensional perturbations of a steady detonation profile
that grow exponentially in time. Later in a remarkable paper [Er3] he provided
strong evidence, by a combination of formal and rigorous arguments, that for
certain classes of steady ZND profiles, unstable zeros of exist for
perturbations of sufficiently large transverse wavenumber \eps, even when the
von Neumann shock, regarded as a gas dynamical shock, is uniformly stable in
the sense defined (nearly twenty years later) by Majda. In spite of a great
deal of later numerical work devoted to computing the zeros of V(\tau,\eps),
the paper \cite{Er3} remains the only work we know of that presents a detailed
and convincing theoretical argument for detecting them.
The analysis in [Er3] points the way toward, but does not constitute, a
mathematical proof that such unstable zeros exist. In this paper we identify
the mathematical issues left unresolved in [Er3] and provide proofs, together
with certain simplifications and extensions, of the main conclusions about
stability and instability of detonations contained in that paper.
The main mathematical problem, and our principal focus here, is to determine
the precise asymptotic behavior as \eps\to \infty of solutions to a linear
system of ODEs in , depending on \eps and a complex frequency as
parameters, with turning points on the half-line
Relativistic Positioning Systems: The Emission Coordinates
This paper introduces some general properties of the gravitational metric and
the natural basis of vectors and covectors in 4-dimensional emission
coordinates. Emission coordinates are a class of space-time coordinates defined
and generated by 4 emitters (satellites) broadcasting their proper time by
means of electromagnetic signals. They are a constitutive ingredient of the
simplest conceivable relativistic positioning systems. Their study is aimed to
develop a theory of these positioning systems, based on the framework and
concepts of general relativity, as opposed to introducing `relativistic
effects' in a classical framework. In particular, we characterize the causal
character of the coordinate vectors, covectors and 2-planes, which are of an
unusual type. We obtain the inequality conditions for the contravariant metric
to be Lorentzian, and the non-trivial and unexpected identities satisfied by
the angles formed by each pair of natural vectors. We also prove that the
metric can be naturally split in such a way that there appear 2 parameters
(scalar functions) dependent exclusively on the trajectory of the emitters,
hence independent of the time broadcast, and 4 parameters, one for each
emitter, scaling linearly with the time broadcast by the corresponding
satellite, hence independent of the others.Comment: 13 pages, 3 figures. Only format changed for a new submission.
Submitted to Class. Quantum Gra
Radioscience simulations in General Relativity and in alternative theories of gravity
In this communication, we focus on the possibility to test GR with
radioscience experiments. We present a new software that in a first step
simulates the Range/Doppler signals directly from the space time metric (thus
in GR and in alternative theories of gravity). In a second step, a
least-squares fit of the involved parameters is performed in GR. This software
allows one to get the order of magnitude and the signature of the modifications
induced by an alternative theory of gravity on radioscience signals. As
examples, we present some simulations for the Cassini mission in
Post-Einsteinian gravity and with the MOND External Field Effect.Comment: 4 pages; Proceedings of "Les Rencontres de Moriond 2011 - Gravitation
session
- …