72 research outputs found

    Reduced neural tracking of prediction error in substance-dependent individuals

    Get PDF
    Objective: Substance-dependent individuals make poor decisions on the Iowa Gambling Task, a reward-related decisionmaking task that involves risk and uncertainty. Task performance depends on several factors, including how sensitive individuals are to feedback and how well they learn based on such feedback. A physiological signal that guides decision making based on feedback is prediction error. The authors investigated whether disruptions in the neural systems underlying prediction error processing in substance-dependent individuals could account for decision-making performance on a modified Iowa Gambling Task. Methods: Thirty-two substance-dependent individuals and 30 healthy comparison subjects played a modified version of the Iowa Gambling Task during MR scanning. Trial-totrial behavior and functional MRI (fMRI) blood-oxygen-level-dependent (BOLD) signal were analyzed using a computational model of prediction error based on internal expectancies. The authors investigated how well BOLD signal tracked prediction error in the striatum and the orbitofrontal cortex as well as over the whole brain in patients relative to comparison subjects

    The geography of biodiversity change in marine and terrestrial assemblages

    Get PDF
    This work was supported by funding to the sChange working group through sDiv, the synthesis center of iDiv, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118). S.A.B., H.B., J.M.C., J.H., and M.W. were supported by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. S.R.S. was supported by U.S. National Science Foundation grant 1400911. LHA was supported by Fundação para a Ciência e Tecnologia, Portugal (POPH/FSE SFRH/BD/90469/2012), and by the Jane and Aatos Erkko Foundation. M.D. was supported by a Leverhulme Trust Fellowship. A.E.M., F.M., and M.D. were supported by ERC AdG BioTIME 250189 and PoC BioCHANGE 727440. A.G. is supported by the Liber Ero Chair in Biodiversity Conservation.Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.PostprintPostprintPeer reviewe

    Turning high-throughput structural biology into predictive inhibitor design

    Get PDF
    A common challenge in drug design pertains to finding chemical modifications to a ligand that increases its affinity to the target protein. An underutilized advance is the increase in structural biology throughput, which has progressed from an artisanal endeavor to a monthly throughput of hundreds of different ligands against a protein in modern synchrotrons. However, the missing piece is a framework that turns high-throughput crystallography data into predictive models for ligand design. Here, we designed a simple machine learning approach that predicts protein–ligand affinity from experimental structures of diverse ligands against a single protein paired with biochemical measurements. Our key insight is using physics-based energy descriptors to represent protein–ligand complexes and a learning-to-rank approach that infers the relevant differences between binding modes. We ran a high-throughput crystallography campaign against the SARS-CoV-2 main protease (MPro), obtaining parallel measurements of over 200 protein–ligand complexes and their binding activities. This allows us to design one-step library syntheses which improved the potency of two distinct micromolar hits by over 10-fold, arriving at a noncovalent and nonpeptidomimetic inhibitor with 120 nM antiviral efficacy. Crucially, our approach successfully extends ligands to unexplored regions of the binding pocket, executing large and fruitful moves in chemical space with simple chemistry

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Lack of Renal 11 Beta-Hydroxysteroid Dehydrogenase Type 2 at Birth, a Targeted Temporal Window for Neonatal Glucocorticoid Action in Human and Mice

    Get PDF
    International audienceBackground Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2). This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse. Methods Cortisol (F) and cortisone (E) concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity) and between plasma and urine in newborns (renal activity). Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species. Results We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein. Conclusions We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming

    TOI-4336 A b:A temperate sub-Neptune ripe for atmospheric characterization in a nearby triple M-dwarf system

    Get PDF
    Small planets transiting bright nearby stars are essential to our understanding of the formation and evolution of exoplanetary systems. However, few constitute prime targets for atmospheric characterization, and even fewer are part of multiple star systems. This work aims to validate TOI-4336 A b, a sub-Neptune-sized exoplanet candidate identified by the TESS space-based transit survey around a nearby M-dwarf. We validate the planetary nature of TOI-4336 A b through the global analysis of TESS and follow-up multi-band high-precision photometric data from ground-based telescopes, medium- and high-resolution spectroscopy of the host star, high-resolution speckle imaging, and archival images. The newly discovered exoplanet TOI-4336 A b has a radius of 2.1±0.1R⊕. Its host star is an M3.5-dwarf star of mass 0.33±0.01M⊙ and radius 0.33±0.02R⊙ member of a hierarchical triple M-dwarf system 22 pc away from the Sun. The planet's orbital period of 16.3 days places it at the inner edge of the Habitable Zone of its host star, the brightest of the inner binary pair. The parameters of the system make TOI-4336 A b an extremely promising target for the detailed atmospheric characterization of a temperate sub-Neptune by transit transmission spectroscopy with JWST

    A large sub-Neptune transiting the thick-disk M4 V TOI-2406

    Get PDF
    We thank the anonymous referee for their corrections and help in improving the paper. We warmly thank the entire technical staff of the Observatorio Astronomico Nacional at San Pedro Martir in Mexico for their unfailing support to SAINT-EX operations, namely: E. Cadena, T. Calvario, E. Colorado, B. Garcia, G. Guisa, A. Franco, L. Figueroa, B. Hernandez, J. Herrera, E. Lopez, E. Lugo, B. Martinez, J. M. Nunez, J. L. Ochoa, M. Pereyra, F. Quiroz, T. Verdugo, I. Zavala. B.V.R. thanks the Heising-Simons Foundation for support. Y.G.M.C acknowledges support from UNAM-PAPIIT IG-101321. B.-O. D. acknowledges support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). R.B. acknowledges the support from the Swiss National Science Foundation under grant P2BEP2_195285. M.N.G. acknowledges support from MIT's Kavli Institute as a Juan Carlos Torres Fellow. A.H.M.J.T acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement nffi 803193/BEBOP), from the MERAC foundation, and from the Science and Technology Facilities Council (STFC; grant nffi ST/S00193X/1). T.D. acknowledges support from MIT's Kavli Institute as a Kavli postdoctoral fellow Part of this work received support from the National Centre for Competence in Research PlanetS, supported by the Swiss National Science Foundation (SNSF). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Fundation (SNF). M.G. and E.J. are F.R.S.-FNRS Senior Research Associate. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to MT. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. Funding for the TESS mission is provided by NASA's Science Mission Directorate. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). We thank the TESS GI program G03274 PI, Ryan Cloutier, for proposing the target of this work for 2-min-cadence observations in Sector 30. This work is based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra de San Pedro Martir (OAN-SPM), Baja California, Mexico. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This work includes data collected at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham. This paper includes data taken on the EDEN telescope network. We acknowledge support from the Earths in Other Solar Systems Project (EOS) and Alien Earths (grant numbers NNX15AD94G and 80NSSC21K0593), sponsored by NASA. Some of the observations in the paper made use of the High-Resolution Imaging instrument Zorro (Gemini program GS-2020B-LP-105). Zorro was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Zorro was mounted on the Gemini South telescope of the international Gemini Observatory, a program of NSF's OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigacion y Desarrollo (Chile), Ministerio de Ciencia, Tecnologia e Innovacion (Argentina), Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This work made use of the following Python packages: astropy (Astropy Collaboration 2013, 2018), lightkurve (Lightkurve Collaboration 2018), matplotlib (Hunter 2007), pandas (Wes McKinney 2010), seaborn (Waskom & The Seaborn Development team 2021), scipy (Virtanen et al. 2020) and numpy (Harris et al. 2020).Context. Large sub-Neptunes are uncommon around the coolest stars in the Galaxy and are rarer still around those that are metal-poor. However, owing to the large planet-to-star radius ratio, these planets are highly suitable for atmospheric study via transmission spectroscopy in the infrared, such as with JWST. Aims. Here we report the discovery and validation of a sub-Neptune orbiting the thick-disk, mid-M dwarf star TOI-2406. The star's low metallicity and the relatively large size and short period of the planet make TOI-2406 b an unusual outcome of planet formation, and its characterisation provides an important observational constraint for formation models. Methods. We first infer properties of the host star by analysing the star's near-infrared spectrum, spectral energy distribution, and Gaia parallax. We use multi-band photometry to confirm that the transit event is on-target and achromatic, and we statistically validate the TESS signal as a transiting exoplanet. We then determine physical properties of the planet through global transit modelling of the TESS and ground-based time-series data. Results. We determine the host to be a metal-poor M4 V star, located at a distance of 56 pc, with properties T-eff = 3100 +/- 75 K, M-* = 0.162 +/- 0.008M(circle dot), R-* = 0.202 +/- 0.011R(circle dot), and [Fe/H] = -0.38 +/- 0.07, and a member of the thick disk. The planet is a relatively large sub-Neptune for the M-dwarf planet population, with R-p = 2.94 +/- 0.17R(circle plus) and P= 3.077 d, producing transits of 2% depth. We note the orbit has a non-zero eccentricity to 3 sigma, prompting questions about the dynamical history of the system. Conclusions. This system is an interesting outcome of planet formation and presents a benchmark for large-planet formation around metal-poor, low-mass stars. The system warrants further study, in particular radial velocity follow-up to determine the planet mass and constrain possible bound companions. Furthermore, TOI-2406 b is a good target for future atmospheric study through transmission spectroscopy. Although the planet's mass remains to be constrained, we estimate the S/N using amass-radius relationship, ranking the system fifth in the population of large sub-Neptunes, with TOI-2406 b having a much lower equilibrium temperature than other spectroscopically accessible members of this population.Heising-Simons FoundationPrograma de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT)Universidad Nacional Autonoma de Mexico IG-101321Swiss National Science Foundation (SNSF)European Commission PP00P2-163967 PP00P2-190080 P2BEP2_195285MIT's Kavli Institute as a Juan Carlos Torres FellowEuropean Research Council (ERC) nffi 803193/BEBOPMERAC foundationUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)Science and Technology Development Fund (STDF) nffi ST/S00193X/1MIT's Kavli Institute as a Kavli postdoctoral fellowSwiss National Science Foundation (SNSF)Australian Research CouncilFonds de la Recherche Scientifique - FNRS FRFC 2.5.594.09.FSwiss National Science Foundation (SNSF)French Community of Belgium in the context of the FRIA Doctoral GrantNASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research CenterNASA's Science Mission DirectorateNational Aeronautics and Space Administration under the Exoplanet Exploration ProgramTESS GI program G03274National Science Foundation (NSF)Earths in Other Solar Systems Project (EOS)Alien Earths - NASA NNX15AD94G 80NSSC21K0593High-Resolution Imaging instrument Zorro (Gemini program) GS-2020B-LP-105NASA Exoplanet Exploration ProgramNational Aeronautics & Space Administration (NASA)National Science Foundation (NSF

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites

    Get PDF
    Background: Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. Results: A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Conclusions: Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a ‘One Health’ approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans
    corecore